Difference between revisions of "Part:BBa K4613013"

 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
Different functional proteins can be incorporated into the polymeric scaffolds in a flexible manner due to its programmability. In this part, NAU-CHINA 2023 incorporated  Mature Carboxypeptidase A (M-CPA), which is capable of hydrolyzing OTA into the non-toxic product ochratoxin α and L-α-phenylalanine (Phe) in a high degration rate. We fused M-CPA into T3 to immobilize the enzyme and increase the stability and sustainable production of M-CPA.
 
Different functional proteins can be incorporated into the polymeric scaffolds in a flexible manner due to its programmability. In this part, NAU-CHINA 2023 incorporated  Mature Carboxypeptidase A (M-CPA), which is capable of hydrolyzing OTA into the non-toxic product ochratoxin α and L-α-phenylalanine (Phe) in a high degration rate. We fused M-CPA into T3 to immobilize the enzyme and increase the stability and sustainable production of M-CPA.
  
We cloned T3-M-CPA (SpyTag-ELPs-SpyTag-ELPs-SpyTag-Linker-MCPA) into the PQE-80L, constructed pQE-80L-T3-M-CPA and expressed the recombinant protein in <i>E. coli</i> BL21(DE3) using Terrific Broth medium and 2xYT medium.  
+
To verify the sIPN system, we engineered bacteria expressing T3-YFP (SpyTag-ELPs-SpyTag-ELPs-SpyTag-YFP) and bacteria expressing C3 (SpyCatcher-ELPs-SpyCatcher-ELPs-SpyCatcher). The constructed plasmids were transformed into <i>E. Coli </i> BL21 (DE3) and recombinant proteins were expressed using LB medium.
 +
 
 +
Purified T3-YFP and C3 were subjected to reactions under predefined time and temperature radients. The proteins after reaction were validated by electrophoresis on polyacrylamide gels (SDS-PAGE), followed by Coomassie brilliant blue staining. A distinct target band can be observed at 130 kDa, demonstrating that T3-YFP (62.4 kDa) and C3 (54.5 kDa) are capable of forming the Spy Network (Fig. 4).This reaction can occur at a variety of temperatures and has good reaction characteristics.
 +
 
 +
<html>
 +
<center><img src="https://static.igem.wiki/teams/4613/wiki/parts/spytag-spycatcher-jiaolian.png"with="1000" height="" width="500" height=""/></center>
 +
</html>
 +
 
 +
<p style="text-align: center!important;"><b>Fig. 1 Diagram of OTA degradation principle.
 +
</b></p>
 +
 
 +
We cloned T3-M-CPA (SpyTag-ELPs-SpyTag-ELPs-SpyTag-Linker-M-CPA) into the PQE-80L, constructed pQE-80L-T3-M-CPA and expressed the recombinant protein in <i>E. coli</i> BL21(DE3) using Terrific Broth medium and 2xYT medium.  
 
After incubation at 25℃ overnight or 37℃ for 4 h and 8 h, respectively, the expression of T3-M-CPA (62.4KDa) was roughly the same as that of C3. The expression levels of both were very low. Therefore, we considered cloning T3-M-CPA into pET-29a(+) vector with the same method to try to increase the expression of T3-M-CPA.
 
After incubation at 25℃ overnight or 37℃ for 4 h and 8 h, respectively, the expression of T3-M-CPA (62.4KDa) was roughly the same as that of C3. The expression levels of both were very low. Therefore, we considered cloning T3-M-CPA into pET-29a(+) vector with the same method to try to increase the expression of T3-M-CPA.
  
Line 13: Line 24:
 
</html>
 
</html>
  
<p style="text-align: center!important;"><b> Fig. 1 Results of PQE-80L-T3. a. The plasmid map of pQE-80l-T3. b-f. SDS-PAGE analysis of protein expression trials in <i>E. coli</i> BL21(DE3), their expression conditions were TB medium incubated at 37℃ for 4h, 8h, 25℃ for 12h, and 2xYT medium incubated at 37℃ for 8h, 25°C for 12 hours in turn. Lane M: protein marker. Lane 1: induced total protein. Lane 2: precipitate. Lane 3: supernatant.
+
<p style="text-align: center!important;"><b> Fig. 2 Results of PQE-80L-T3. a. The plasmid map of pQE-80l-T3. b-f. SDS-PAGE analysis of protein expression trials in <i>E. coli</i> BL21(DE3), their expression conditions were TB medium incubated at 37℃ for 4 h, 8 h, 25℃ for 12 h, and 2xYT medium incubated at 37℃ for 8 h, 25°C for 12 h in turn. Lane M: protein marker. Lane 1: induced total protein. Lane 2: precipitate. Lane 3: supernatant.
 
</b></p>
 
</b></p>
  
Line 21: Line 32:
 
</html>
 
</html>
  
<p style="text-align: center!important;"><b>Fig. 2 Results of pET-29a(+)-T3-M-CPA. a. The plasmid map of pET-29a(+)-T3-M-CPA. b.SDS-PAGE analysis of the purified protein T3 in <i>E. coli</i> BL21(DE3) cultured in LB medium express protein for 12 hours at 20℃ . Lane M: protein marker. Lanes 1-6: flow through and elution containing 10, 50, 50, 100, 100, 250, 250 mM imidazole, respectively. c. SDS-PAGE analysis of protein expression trials in SHuffle T7 <i>E. coli</i> cultured in 2xYT medium for 12 hours using pQE-80L-T3. The temperature was 20℃. Lane M: protein marker. Lane 1: induced total protein. Lane 2: precipitate. Lane 3: supernatant.  
+
<p style="text-align: center!important;"><b>Fig. 3 Results of pET-29a(+)-T3-M-CPA. (a) The plasmid map of pET-29a(+)-T3-M-CPA. (b)SDS-PAGE analysis of the purified protein T3 in <i>E. coli</i> BL21(DE3) cultured in LB medium express protein for 12 h at 20℃. Lane M: protein marker. Lanes 1-6: flow through and elution containing 10, 50, 50, 100, 100, 250, 250 mM imidazole, respectively. (c) SDS-PAGE analysis of protein expression trials in SHuffle T7 <i>E. coli</i> cultured in 2xYT medium for 12 h using pQE-80L-T3. The temperature was 20℃. Lane M: protein marker. Lane 1: induced total protein. Lane 2: precipitate. Lane 3: supernatant.  
 
</b></p>
 
</b></p>
  
Line 28: Line 39:
 
</html>
 
</html>
  
<p style="text-align: center!important;"><b>Fig. 3 SDS-PAGE analysis of the purified protein T3-M-CPA in <em>E. coli</em> BL21 (DE3) cultured in LB medium express protein for 12 hours at 20°C . Lane M: protein marker. Lanes 1-6: flow through and elution containing 10, 50, 50, 100,100,250,250 mm imidazole, respectively.</b></p>
+
<p style="text-align: center!important;"><b>Fig. 4 SDS-PAGE analysis of the purified protein T3-M-CPA in <em>E. coli</em> BL21 (DE3) cultured in LB medium express protein for 12 h at 20℃. Lane M: protein marker. Lanes 1-6: flow through and elution containing 10, 50, 50, 100,100,250,250 mm imidazole, respectively.</b></p>
  
 
==== Reference ====
 
==== Reference ====

Latest revision as of 14:57, 12 October 2023


T3-M-CPA

T3 (BBa_K4613011) and C3 (BBa_K4613012) could form protein complexes by elastin-like polypeptides (ELPs) monomers containing SpyTags and SpyCatchers. Different functional proteins can be incorporated into the polymeric scaffolds in a flexible manner due to its programmability. In this part, NAU-CHINA 2023 incorporated Mature Carboxypeptidase A (M-CPA), which is capable of hydrolyzing OTA into the non-toxic product ochratoxin α and L-α-phenylalanine (Phe) in a high degration rate. We fused M-CPA into T3 to immobilize the enzyme and increase the stability and sustainable production of M-CPA.

To verify the sIPN system, we engineered bacteria expressing T3-YFP (SpyTag-ELPs-SpyTag-ELPs-SpyTag-YFP) and bacteria expressing C3 (SpyCatcher-ELPs-SpyCatcher-ELPs-SpyCatcher). The constructed plasmids were transformed into E. Coli BL21 (DE3) and recombinant proteins were expressed using LB medium.

Purified T3-YFP and C3 were subjected to reactions under predefined time and temperature radients. The proteins after reaction were validated by electrophoresis on polyacrylamide gels (SDS-PAGE), followed by Coomassie brilliant blue staining. A distinct target band can be observed at 130 kDa, demonstrating that T3-YFP (62.4 kDa) and C3 (54.5 kDa) are capable of forming the Spy Network (Fig. 4).This reaction can occur at a variety of temperatures and has good reaction characteristics.

Fig. 1 Diagram of OTA degradation principle.

We cloned T3-M-CPA (SpyTag-ELPs-SpyTag-ELPs-SpyTag-Linker-M-CPA) into the PQE-80L, constructed pQE-80L-T3-M-CPA and expressed the recombinant protein in E. coli BL21(DE3) using Terrific Broth medium and 2xYT medium. After incubation at 25℃ overnight or 37℃ for 4 h and 8 h, respectively, the expression of T3-M-CPA (62.4KDa) was roughly the same as that of C3. The expression levels of both were very low. Therefore, we considered cloning T3-M-CPA into pET-29a(+) vector with the same method to try to increase the expression of T3-M-CPA.

Fig. 2 Results of PQE-80L-T3. a. The plasmid map of pQE-80l-T3. b-f. SDS-PAGE analysis of protein expression trials in E. coli BL21(DE3), their expression conditions were TB medium incubated at 37℃ for 4 h, 8 h, 25℃ for 12 h, and 2xYT medium incubated at 37℃ for 8 h, 25°C for 12 h in turn. Lane M: protein marker. Lane 1: induced total protein. Lane 2: precipitate. Lane 3: supernatant.


Fig. 3 Results of pET-29a(+)-T3-M-CPA. (a) The plasmid map of pET-29a(+)-T3-M-CPA. (b)SDS-PAGE analysis of the purified protein T3 in E. coli BL21(DE3) cultured in LB medium express protein for 12 h at 20℃. Lane M: protein marker. Lanes 1-6: flow through and elution containing 10, 50, 50, 100, 100, 250, 250 mM imidazole, respectively. (c) SDS-PAGE analysis of protein expression trials in SHuffle T7 E. coli cultured in 2xYT medium for 12 h using pQE-80L-T3. The temperature was 20℃. Lane M: protein marker. Lane 1: induced total protein. Lane 2: precipitate. Lane 3: supernatant.

Fig. 4 SDS-PAGE analysis of the purified protein T3-M-CPA in E. coli BL21 (DE3) cultured in LB medium express protein for 12 h at 20℃. Lane M: protein marker. Lanes 1-6: flow through and elution containing 10, 50, 50, 100,100,250,250 mm imidazole, respectively.

Reference

  1. Dai Z, Yang X, Wu F, et al.Living fabrication of functional semi-interpenetrating polymeric materials[J].Nat Commun,2021, 12 (1): 3422.
  2. Zakeri B, Fierer J O, Celik E, et al.Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin[J].Proc Natl Acad Sci U S A,2012, 109 (12): E690-7.
  3. Reddington S C, Howarth M.Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher[J].Curr Opin Chem Biol,2015, 29: 94-9.
  4. Xiong L, Peng M, Zhao M, et al.Truncated Expression of a Carboxypeptidase A from Bovine Improves Its Enzymatic Properties and Detoxification Efficiency of Ochratoxin A[J].Toxins (Basel),2020, 12 (11).

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 995
    Illegal BamHI site found at 940
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1105
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI site found at 8