Difference between revisions of "Part:BBa K4830028:Design"

(Design Notes)
 
(One intermediate revision by the same user not shown)
Line 11: Line 11:
  
 
===Source===
 
===Source===
 
 
The eGFP is derived from Aequorea victoria. It has an excitation maxima of 488nm, and emission maxima of 509nm.
 
The eGFP is derived from Aequorea victoria. It has an excitation maxima of 488nm, and emission maxima of 509nm.
 
 
  
 
===References===
 
===References===
 
Certo, M. T., Ryu, B. Y., Annis, J. E., Garibov, M., Jarjour, J., Rawlings, D. J., & Scharenberg, A. M. (2011). Tracking genome engineering outcome at individual DNA breakpoints. Nature Methods, 8(8), 671–676.
 
Certo, M. T., Ryu, B. Y., Annis, J. E., Garibov, M., Jarjour, J., Rawlings, D. J., & Scharenberg, A. M. (2011). Tracking genome engineering outcome at individual DNA breakpoints. Nature Methods, 8(8), 671–676.

Latest revision as of 17:34, 11 October 2023


eGFP_simple premature stop codon


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

A premature stop codon has to be installed into a functional eGFP. The premature stop codon requires only a simple edit (two nucleotides change) to restore the wild-type eGFP.

Source

The eGFP is derived from Aequorea victoria. It has an excitation maxima of 488nm, and emission maxima of 509nm.

References

Certo, M. T., Ryu, B. Y., Annis, J. E., Garibov, M., Jarjour, J., Rawlings, D. J., & Scharenberg, A. M. (2011). Tracking genome engineering outcome at individual DNA breakpoints. Nature Methods, 8(8), 671–676.