Difference between revisions of "Part:BBa K4765105"

m
 
(8 intermediate revisions by 4 users not shown)
Line 6: Line 6:
 
__TOC__
 
__TOC__
  
===Usage and Biology===
 
Similar to [https://parts.igem.org/Part:BBa_K4765103 ribozyme+strong RBS+intimin-Ag2 fusion+stem-loop], we replaced Ag2 with Ag3 in order to interact with [https://parts.igem.org/Part:BBa_K4765106 ribozyme+strong RBS+intimin-Nb3 fusion+stem-loop] to create a biofilm.
 
  
 +
===Introduction===
 +
We introduced a self-assembly synthetic biofilm formation system by transfecting intimin-Ag3 fusion into ''E. coli''. Intimin-Ag3 fusion is composed of a surface display system(intimin) and the coding sequence of an antigen. The surface display system, which includes a short N-terminal signal peptide to direct its trafficking to the periplasm, a LysM domain for peptidoglycan binding, and a beta-barrel for transmembrane insertion<ref>Piñero-Lambea, C., Bodelón, G., Fernández-Periáñez, R., Cuesta, A. M., Álvarez-Vallina, L., & Fernández, L. Á. (2015). Programming controlled adhesion of ''E. coli'' to target surfaces, cells, and tumors with synthetic adhesins. ''ACS Synthetic Biology, 4''(4), 463–473. https://doi.org/10.1021/sb500252a </ref> , possesses the outer membrane anchoring of the antigen<ref>Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. ''Cell, 174''(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041</ref>.
  
 +
===Usage and Biology===
 +
The surface-displayed antigen can specifically interact with the nanobody produced by [https://parts.igem.org/Part:BBa_K4765104 BBa_K4765106] In our project, we took full advantage of the Ag-Nb interaction to create a bacteria lawn with a programmable physical structure<ref>Kim, H., Skinner, D. J., Glass, D. S., Hamby, A. E., Stuart, B. A. R., Dunkel, J., & Riedel-Kruse, I. H. (2022). 4-bit adhesion logic enables universal multicellular interface patterning. ''Nature, 608''(7922), 324–329. https://doi.org/10.1038/s41586-022-04944-2</ref>..
 +
 +
Get details in [https://parts.igem.org/Part:BBa_K4765106 BBa_K4765106].
  
 
<!-- -->
 
<!-- -->
<span class='h3bb'>Sequence and Features</span>
+
===Sequence and Features===
 
<partinfo>BBa_K4765105 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K4765105 SequenceAndFeatures</partinfo>
  
Line 20: Line 24:
 
<partinfo>BBa_K4765105 parameters</partinfo>
 
<partinfo>BBa_K4765105 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===Reference===

Latest revision as of 15:44, 12 October 2023


Twister P1 + T7_RBS + intimin-Ag3 fusion + stem-loop

contributed by Fudan iGEM 2023


Introduction

We introduced a self-assembly synthetic biofilm formation system by transfecting intimin-Ag3 fusion into E. coli. Intimin-Ag3 fusion is composed of a surface display system(intimin) and the coding sequence of an antigen. The surface display system, which includes a short N-terminal signal peptide to direct its trafficking to the periplasm, a LysM domain for peptidoglycan binding, and a beta-barrel for transmembrane insertion[1] , possesses the outer membrane anchoring of the antigen[2].

Usage and Biology

The surface-displayed antigen can specifically interact with the nanobody produced by BBa_K4765106 In our project, we took full advantage of the Ag-Nb interaction to create a bacteria lawn with a programmable physical structure[3]..

Get details in BBa_K4765106.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 1305


Reference

  1. Piñero-Lambea, C., Bodelón, G., Fernández-Periáñez, R., Cuesta, A. M., Álvarez-Vallina, L., & Fernández, L. Á. (2015). Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synthetic Biology, 4(4), 463–473. https://doi.org/10.1021/sb500252a
  2. Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell, 174(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041
  3. Kim, H., Skinner, D. J., Glass, D. S., Hamby, A. E., Stuart, B. A. R., Dunkel, J., & Riedel-Kruse, I. H. (2022). 4-bit adhesion logic enables universal multicellular interface patterning. Nature, 608(7922), 324–329. https://doi.org/10.1038/s41586-022-04944-2