Difference between revisions of "Part:BBa K4765904"
Siliang Zhan (Talk | contribs) |
Siliang Zhan (Talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | <partinfo> | + | <partinfo>BBa_K4765904 short</partinfo> |
− | === | + | ==Introduction== |
+ | We introduced a self-assembly synthetic adhesion system by transfecting this bio-brick into ''E. coli''. The bio-brick is composed of a surface display system(intimin) and the coding sequence of a nanobody. The surface display system, which includes a short N-terminal signal peptide to direct its trafficking to the periplasm, a LysM domain for peptidoglycan binding, and a beta-barrel for transmembrane insertion<ref>Piñero-Lambea, C., Bodelón, G., Fernández-Periáñez, R., Cuesta, A. M., Álvarez-Vallina, L., & Fernández, L. Á. (2015). Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins.'' ACS Synthetic Biology, 4''(4), 463–473. https://doi.org/10.1021/sb500252a </ref>, possess the outer membrane anchoring of the nanobody<ref>Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. ''Cell, 174''(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041</ref>. | ||
+ | |||
+ | ==Usage and Biology== | ||
+ | The surface-displayed nanobody can specifically interact with the antigen produced by [https://parts.igem.org/Part:BBa_K4765011 BBa_K4765011](initimin-Ag2 fusion) .In our project, we took full advantage of the Ag-Nb interaction to create a biofilm with a programmable physical structure<ref>Kim, H., Skinner, D. J., Glass, D. S., Hamby, A. E., Stuart, B. A. R., Dunkel, J., & Riedel-Kruse, I. H. (2022). 4-bit adhesion logic enables universal multicellular interface patterning. ''Nature, 608''(7922), 324–329. https://doi.org/10.1038/s41586-022-04944-2</ref>. | ||
− | |||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
− | <partinfo> | + | <partinfo>BBa_K4765904 SequenceAndFeatures</partinfo> |
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display | ||
===Functional Parameters=== | ===Functional Parameters=== | ||
− | <partinfo> | + | <partinfo>BBa_K4765904 parameters</partinfo> |
<!-- --> | <!-- --> | ||
==References== | ==References== | ||
<references /> | <references /> |
Latest revision as of 08:19, 11 August 2023
intimin-Nb2 fusion
Introduction
We introduced a self-assembly synthetic adhesion system by transfecting this bio-brick into E. coli. The bio-brick is composed of a surface display system(intimin) and the coding sequence of a nanobody. The surface display system, which includes a short N-terminal signal peptide to direct its trafficking to the periplasm, a LysM domain for peptidoglycan binding, and a beta-barrel for transmembrane insertion[1], possess the outer membrane anchoring of the nanobody[2].
Usage and Biology
The surface-displayed nanobody can specifically interact with the antigen produced by BBa_K4765011(initimin-Ag2 fusion) .In our project, we took full advantage of the Ag-Nb interaction to create a biofilm with a programmable physical structure[3].
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 1244
References
- ↑ Piñero-Lambea, C., Bodelón, G., Fernández-Periáñez, R., Cuesta, A. M., Álvarez-Vallina, L., & Fernández, L. Á. (2015). Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synthetic Biology, 4(4), 463–473. https://doi.org/10.1021/sb500252a
- ↑ Glass, D. S., & Riedel-Kruse, I. H. (2018). A Synthetic Bacterial Cell-Cell Adhesion Toolbox for Programming Multicellular Morphologies and Patterns. Cell, 174(3), 649-658.e16. https://doi.org/10.1016/j.cell.2018.06.041
- ↑ Kim, H., Skinner, D. J., Glass, D. S., Hamby, A. E., Stuart, B. A. R., Dunkel, J., & Riedel-Kruse, I. H. (2022). 4-bit adhesion logic enables universal multicellular interface patterning. Nature, 608(7922), 324–329. https://doi.org/10.1038/s41586-022-04944-2