Difference between revisions of "Part:BBa K4414044"
(→Usage and Biology) |
|||
(4 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K4414044 short</partinfo> | <partinfo>BBa_K4414044 short</partinfo> | ||
− | This composite part consists of an N-terminal | + | This composite part consists of an N-terminal GR LBD([[Part:BBa_K4414000]]) domain and a C-terminal tetR([[Part:BBa_K4414009]]) domain fused with NES([[Part:BBa_K4414003]]). It is designed to sense glucocorticoids and activates the transcription of the reporter gene. |
==Usage and Biology== | ==Usage and Biology== | ||
− | As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter ([[Part:BBa_K4016011]]) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The GR | + | As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter ([[Part:BBa_K4016011]]) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The GR LBD domain on the N terminal is the ligand binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression(Weikum et al., 2017). NES is a nuclear export signal which can translocate protein from the nucleus into the cytosol . |
<html> | <html> | ||
<figure class="figure"> | <figure class="figure"> | ||
− | <img src="https://static.igem.wiki/teams/4414/wiki/ | + | <img src="https://static.igem.wiki/teams/4414/wiki/044-1.png" class="figure-img img-fluid rounded" height="350px"> |
</figure> | </figure> | ||
Line 23: | Line 23: | ||
− | < | + | <!-- --> |
− | <partinfo> | + | ===Sequence and Features=== |
+ | <partinfo>BBa_K4414044 SequenceAndFeatures</partinfo> | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display | ||
===Functional Parameters=== | ===Functional Parameters=== | ||
− | <partinfo> | + | <partinfo>BBa_K4414044 parameters</partinfo> |
<!-- --> | <!-- --> | ||
Line 36: | Line 37: | ||
===Method=== | ===Method=== | ||
<html> | <html> | ||
− | Cells were treated with 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol | + | Cells were treated with 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol (Shao, Qiu, & Xie, 2021). |
<figure class="figure"> | <figure class="figure"> | ||
<img src="https://static.igem.wiki/teams/4414/wiki/44-2.png | <img src="https://static.igem.wiki/teams/4414/wiki/44-2.png | ||
Line 60: | Line 61: | ||
==Reference== | ==Reference== | ||
− | 1.Weikum | + | 1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol, 18(3), 159-174. doi:10.1038/nrm.2016.152 |
− | 2.Shao J, Qiu X, Xie M. Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol | + | 2. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol, 2312, 35-57. doi:10.1007/978-1-0716-1441-9_3 |
Latest revision as of 08:50, 13 October 2022
LBD-GSG-NES-GSG-TetR
This composite part consists of an N-terminal GR LBD(Part:BBa_K4414000) domain and a C-terminal tetR(Part:BBa_K4414009) domain fused with NES(Part:BBa_K4414003). It is designed to sense glucocorticoids and activates the transcription of the reporter gene.
Usage and Biology
As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. This part consists of a tetR DNA binding domain, which binds to the TCE promoter (Part:BBa_K4016011) consisting of seven direct 19-bp tet operator sequence (tetO) repeats. The GR LBD domain on the N terminal is the ligand binding domain of the glucocorticoid receptor(GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression(Weikum et al., 2017). NES is a nuclear export signal which can translocate protein from the nucleus into the cytosol .
Figure1. Schematic figure of BBa_K4414044 and (Part:BBa_K4414041)
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Functional Test
To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both BBa_K4414044 and TCE-SEAP(Part:BBa_K4414041).
Method
Cells were treated with 100 nM Glucocorticoids 6 h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 48 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol (Shao, Qiu, & Xie, 2021). Figure2.Schematic representation of the experimental process of validation for BBa_K4414044 and (Part:BBa_K4414041).
Result
Results showed significantly increased SEAP expression in glucocorticoid-treated cells compared to the non-treated control (91.6 folds)(Figure 3).
Figure3. Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414044.
Reference
1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol, 18(3), 159-174. doi:10.1038/nrm.2016.152
2. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol, 2312, 35-57. doi:10.1007/978-1-0716-1441-9_3