Difference between revisions of "Part:BBa K4221010"
(3 intermediate revisions by 2 users not shown) | |||
Line 15: | Line 15: | ||
===Usage=== | ===Usage=== | ||
Aqueous two-phase separation (ATPS) is a liquid-liquid fractionation technique effectively used for protein separation and purification[1]. When a protein fuses with a hydrophobin, the hydrophobin changes the hydrophobicity of the protein, which causes the protein to aggregate into the surfactants. | Aqueous two-phase separation (ATPS) is a liquid-liquid fractionation technique effectively used for protein separation and purification[1]. When a protein fuses with a hydrophobin, the hydrophobin changes the hydrophobicity of the protein, which causes the protein to aggregate into the surfactants. | ||
+ | |||
Our team is trying to improve traditional ATPS by incorporating a continuous-flow system and replacing fungal hydrophobins with BslA. | Our team is trying to improve traditional ATPS by incorporating a continuous-flow system and replacing fungal hydrophobins with BslA. | ||
− | Using EBFP[2] as target | + | Using EBFP[2] as target protein can visually observe fluorescent protein (EBFP,target protein) showing blue fluorescence in the process of protein expression and two-phase extraction, so as to determine the separation and purification effect. |
In the process of protein purification by ATPs, we can use the amphiphilicity of BslA to change the hydrophilicity of fluorescent protein, so that fluorescent protein can only show fluorescence in the organic phase/aqueous phase, so as to achieve a high-efficiency and low-cost protein purification method. | In the process of protein purification by ATPs, we can use the amphiphilicity of BslA to change the hydrophilicity of fluorescent protein, so that fluorescent protein can only show fluorescence in the organic phase/aqueous phase, so as to achieve a high-efficiency and low-cost protein purification method. | ||
Line 22: | Line 23: | ||
===Biology=== | ===Biology=== | ||
Blue fluorescent protein (BFP)[3] was mutant of GFP which originally identified from the jellyfish (Aequorea victoria). | Blue fluorescent protein (BFP)[3] was mutant of GFP which originally identified from the jellyfish (Aequorea victoria). | ||
− | |||
− | |||
− | |||
− | |||
− | === | + | ===Design Consideration=== |
+ | The construct was cloned into a PET28a plasmid and transformed into BL21 (DE3) E. coli. | ||
− | + | The construction includes: | |
− | + | ||
− | + | EBFP is fused with BslA with a TEVlinker(GAAAACCTGTACTTCCAGGGTTCTGGT) | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
===Reference=== | ===Reference=== |
Latest revision as of 06:41, 11 October 2022
EBFP-TEVlinker-BslA(42-181aa)
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage
Aqueous two-phase separation (ATPS) is a liquid-liquid fractionation technique effectively used for protein separation and purification[1]. When a protein fuses with a hydrophobin, the hydrophobin changes the hydrophobicity of the protein, which causes the protein to aggregate into the surfactants.
Our team is trying to improve traditional ATPS by incorporating a continuous-flow system and replacing fungal hydrophobins with BslA. Using EBFP[2] as target protein can visually observe fluorescent protein (EBFP,target protein) showing blue fluorescence in the process of protein expression and two-phase extraction, so as to determine the separation and purification effect.
In the process of protein purification by ATPs, we can use the amphiphilicity of BslA to change the hydrophilicity of fluorescent protein, so that fluorescent protein can only show fluorescence in the organic phase/aqueous phase, so as to achieve a high-efficiency and low-cost protein purification method.
Biology
Blue fluorescent protein (BFP)[3] was mutant of GFP which originally identified from the jellyfish (Aequorea victoria).
Design Consideration
The construct was cloned into a PET28a plasmid and transformed into BL21 (DE3) E. coli.
The construction includes:
EBFP is fused with BslA with a TEVlinker(GAAAACCTGTACTTCCAGGGTTCTGGT)
Reference
[1] E Mustalahti, M Saloheimo, J J. JoensuuIntracellular protein production in Trichodermareesei (Hypocreajecorina) with hydrophobin fusion technology[J]. New Biotechnology, 2013(30)
[2]Aijia J, Xibin N. Construction and Expression of Prokaryotic Expression Vector pET28a-EGFP[J]. JOURNAL OF MICROBIOLOGY, 2011, 31(4):69-73.
[3]PapadakiStavrini; Xinyue Wang; Yangdong Wang. Etc. Dual-expression system for blue fluorescent protein optimization.[J]. Scientific reports, 2022(3).