Difference between revisions of "Part:BBa K4414027"
(8 intermediate revisions by 2 users not shown) | |||
Line 9: | Line 9: | ||
==Usage and Biology== | ==Usage and Biology== | ||
As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. | As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. | ||
− | Tet R on the N terminus in our design provides DNA binding domain tightly binding to the downstream gene, which binds to the TCE promoter (BBa_K4016011) consisting of seven direct 19-bp Tet operator sequence (Teto) repeats. VP64 is a transcriptional activator composed of four tandem copies of VP16 connected with glycine-serine (GS) linkers. GGGSG linker, owning some flexibility and allowing the proteins on both sides to complete their own independent functions. The | + | Tet R on the N terminus in our design provides DNA binding domain tightly binding to the downstream gene, which binds to the TCE promoter ([[Part:BBa_K4016011]]) consisting of seven direct 19-bp Tet operator sequence (Teto) repeats. VP64 is a transcriptional activator composed of four tandem copies of VP16 connected with glycine-serine (GS) linkers. GGGSG linker, owning some flexibility and allowing the proteins on both sides to complete their own independent functions. The GR LBD domain on the C terminus is the ligand binding domain of the glucocorticoid receptor (GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression(Weikum et al., 2017). |
Line 20: | Line 20: | ||
</html> | </html> | ||
− | Fugure1.Schematic figure of BBa_K4414027 and BBa_K4414041. | + | Fugure1.Schematic figure of BBa_K4414027 and ([[Part:BBa_K4414041]]). |
− | |||
− | |||
<!-- --> | <!-- --> | ||
Line 39: | Line 37: | ||
==Functional test== | ==Functional test== | ||
− | To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both Tet R-VP64-1*GS linker-LBD(BBa_K4414027) and TCE-SEAP(BBa_K4414041). | + | To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both Tet R-VP64-1*GS linker-LBD (BBa_K4414027) and TCE-SEAP([[Part:BBa_K4414041]]). |
===Method=== | ===Method=== | ||
− | Cells were treated with 0 or 100 nm Glucocorticoids 6h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol. | + | Cells were treated with 0 or 100 nm Glucocorticoids 6h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol(Shao, Qiu, & Xie, 2021). |
<html> | <html> | ||
Line 52: | Line 50: | ||
</html> | </html> | ||
− | Figure2.Schematic representation of the experimental process of validation for BBa_K4414027 and BBa_K4414041. | + | Figure2.Schematic representation of the experimental process of validation for BBa_K4414027 and ([[Part:BBa_K4414041]]). |
Line 69: | Line 67: | ||
Figure3.Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414027. | Figure3.Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414027. | ||
===Reference=== | ===Reference=== | ||
− | + | 1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol, 18(3), 159-174. doi:10.1038/nrm.2016.152 | |
− | + | 2. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol, 2312, 35-57. doi:10.1007/978-1-0716-1441-9_3 |
Latest revision as of 17:51, 11 October 2022
tetR-vp64-GGGSG-LBD
This part is an integrated tool for the perception of cortisol stimulation and activates the transcription of the reporter gene.
Usage and Biology
As a glucocorticoid sensor, this part is designed to enter the nucleus upon glucocorticoid stimulation and bind to the TCE promoter to activate downstream transcription. Tet R on the N terminus in our design provides DNA binding domain tightly binding to the downstream gene, which binds to the TCE promoter (Part:BBa_K4016011) consisting of seven direct 19-bp Tet operator sequence (Teto) repeats. VP64 is a transcriptional activator composed of four tandem copies of VP16 connected with glycine-serine (GS) linkers. GGGSG linker, owning some flexibility and allowing the proteins on both sides to complete their own independent functions. The GR LBD domain on the C terminus is the ligand binding domain of the glucocorticoid receptor (GR). This LBD domain can translocate the fusion protein into the nucleus upon glucocorticoid stimulation. It also has a transactivating domain 2 (τ2) and an activation function domain 2 (AF2) which activates downstream gene expression(Weikum et al., 2017).
Fugure1.Schematic figure of BBa_K4414027 and (Part:BBa_K4414041).
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Functional test
To test the ability of this part to respond to glucocorticoids, HEK-293T cells were co-transfected with plasmids encoding both Tet R-VP64-1*GS linker-LBD (BBa_K4414027) and TCE-SEAP(Part:BBa_K4414041).
Method
Cells were treated with 0 or 100 nm Glucocorticoids 6h post-transfection. Cells without glucocorticoid treatment were used as control. Culture medium was collected at 24 h post glucocorticoids treatment. SEAP activity was measured according to a published protocol(Shao, Qiu, & Xie, 2021).
Figure2.Schematic representation of the experimental process of validation for BBa_K4414027 and (Part:BBa_K4414041).
Result
Results showed similar SEAP expression in glucocorticoid-treated cells compared to the non-treated control (1.15 folds).
Figure3.Glucocorticoid-stimulated transcriptional activation of SEAP mediated by BBa_K4414027.
Reference
1. Weikum, E. R., Knuesel, M. T., Ortlund, E. A., & Yamamoto, K. R. (2017). Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol, 18(3), 159-174. doi:10.1038/nrm.2016.152
2. Shao, J., Qiu, X., & Xie, M. (2021). Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol, 2312, 35-57. doi:10.1007/978-1-0716-1441-9_3