Difference between revisions of "Part:BBa K4321000:Design"
(→References) |
(→Reference) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 7: | Line 7: | ||
===Design Notes=== | ===Design Notes=== | ||
− | + | Cyt2Ba forms cytoplasmic inclusion bodies that do no cause cytotoxic effects to the host bacteria. As a result, encoding a helper protein such as P20, that prevent cytotoxic effects on host cells is unnecessary. | |
+ | ===Source=== | ||
+ | Cyt2Ba originates from Bacillus thuringiensis serovar israelensis ISPC-12. The full-length sequence was sourced from Genbank and synthesized as a cassette (BBa_K4321009) by IDT. | ||
− | == | + | ==Reference== |
+ | Cohen, S., Dym, O., Albeck, S., Ben-Dov, E., Cahan, R., Firer, M., & Zaritsky, A. (2008). High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis. Journal of molecular biology, 380(5), 820–827. https://doi.org/10.1016/j.jmb.2008.05.010 | ||
+ | |||
+ | Fernández-Chapa, D., Ramírez-Villalobos, J., & Galán-Wong, L. (2019). Toxic potential ofbacillus thuringiensis: An overview. Protecting Rice Grains in the Post-Genomic Era. https://doi.org/10.5772/intechopen.85756 | ||
+ | |||
+ | Soberón, M., López-Díaz, J. A., & Bravo, A. (2013). Cyt toxins produced by bacillus thuringiensis: A protein fold conserved in several pathogenic microorganisms. Peptides, 41, 87–93. https://doi.org/10.1016/j.peptides.2012.05.023 | ||
− | + | Valtierra-de-Luis, D., Villanueva, M., Berry, C., & Caballero, P. (2020). Potential for bacillus thuringiensis and other bacterial toxins as biological control agents to combat dipteran pests of medical and agronomic importance. Toxins, 12(12), 773. https://doi.org/10.3390/toxins12120773 | |
− | + | Wang, FF., Qu, SX., Lin, JS. et al. Identification of Cyt2Ba from a New Strain of Bacillus thuringiensis and Its Toxicity in Bradysia difformis. Curr Microbiol 77, 2859–2866 (2020). https://doi.org/10.1007/s00284-020-02018-y |
Latest revision as of 22:05, 7 October 2022
Cytotoxic Protein 2Ba (Cyt2Ba)
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
Cyt2Ba forms cytoplasmic inclusion bodies that do no cause cytotoxic effects to the host bacteria. As a result, encoding a helper protein such as P20, that prevent cytotoxic effects on host cells is unnecessary.
Source
Cyt2Ba originates from Bacillus thuringiensis serovar israelensis ISPC-12. The full-length sequence was sourced from Genbank and synthesized as a cassette (BBa_K4321009) by IDT.
Reference
Cohen, S., Dym, O., Albeck, S., Ben-Dov, E., Cahan, R., Firer, M., & Zaritsky, A. (2008). High-resolution crystal structure of activated Cyt2Ba monomer from Bacillus thuringiensis subsp. israelensis. Journal of molecular biology, 380(5), 820–827. https://doi.org/10.1016/j.jmb.2008.05.010
Fernández-Chapa, D., Ramírez-Villalobos, J., & Galán-Wong, L. (2019). Toxic potential ofbacillus thuringiensis: An overview. Protecting Rice Grains in the Post-Genomic Era. https://doi.org/10.5772/intechopen.85756
Soberón, M., López-Díaz, J. A., & Bravo, A. (2013). Cyt toxins produced by bacillus thuringiensis: A protein fold conserved in several pathogenic microorganisms. Peptides, 41, 87–93. https://doi.org/10.1016/j.peptides.2012.05.023
Valtierra-de-Luis, D., Villanueva, M., Berry, C., & Caballero, P. (2020). Potential for bacillus thuringiensis and other bacterial toxins as biological control agents to combat dipteran pests of medical and agronomic importance. Toxins, 12(12), 773. https://doi.org/10.3390/toxins12120773
Wang, FF., Qu, SX., Lin, JS. et al. Identification of Cyt2Ba from a New Strain of Bacillus thuringiensis and Its Toxicity in Bradysia difformis. Curr Microbiol 77, 2859–2866 (2020). https://doi.org/10.1007/s00284-020-02018-y