Difference between revisions of "Part:BBa K863010"

 
(3 intermediate revisions by 2 users not shown)
Line 36: Line 36:
 
</html>
 
</html>
  
==Team TecCEM Characterization, Colorimetric Assay and Purification==
+
==Team TecCEM Characterization==
  
 
<html>
 
<html>
 +
 +
<div class=WordSection1>
  
 
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
 
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
Line 45: Line 47:
 
"Times New Roman";color:black;mso-ansi-language:EN-US'>TecCEM</span></b></span><b><span
 
"Times New Roman";color:black;mso-ansi-language:EN-US'>TecCEM</span></b></span><b><span
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-ansi-language:EN-US'> Characterization,
+
"Times New Roman";color:black;mso-ansi-language:EN-US'> Characterization, <span
colorimetric <span class=GramE>assay</span> and purification</span></b><span
+
class=GramE>purification</span> and degradation of dyes</span></b><span
 
lang=EN-US style='font-size:12.0pt;font-family:"Times New Roman",serif;
 
lang=EN-US style='font-size:12.0pt;font-family:"Times New Roman",serif;
 
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></p>
 
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></p>
Line 55: Line 57:
 
mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-US'>For
 
mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-US'>For
 
the characterization of the Laccase BBa_K863010 we conducted an IPTG induction
 
the characterization of the Laccase BBa_K863010 we conducted an IPTG induction
experiment in which we used the transformation of the Laccase in <i>E. coli</i>
+
experiment in which we transformed the plasmid pSB1C3 containing the Laccase in
BL21. We thought that we could use another strain called <span class=GramE>SoluBL21</span>
+
<i>E. coli</i> BL21-DE3. We thought that we could use another strain called <span
but results were not successful as no expression was found. We verified the
+
class=GramE>SoluBL21</span> but results were not successful as no expression
presence of the protein through an SDS-PAGE with a gel concentration of 12% and
+
was found. We verified the presence of the protein through an SDS-PAGE with a
found a visible band with a mass of around 50 <span class=SpellE>kDa</span>. </span><span
+
gel concentration of 12% and found a visible band with a mass of around 50 <span
class=SpellE><span style='font-size:10.0pt;font-family:"Arial",sans-serif;
+
class=SpellE>kDa</span>. We also analyzed soluble and insoluble fractions and
mso-fareast-font-family:"Times New Roman";color:black'>This</span></span><span
+
the presence of protein in the culture medium. This can be seen in figure
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
+
1.&nbsp;</span><span lang=EN-US style='font-size:12.0pt;font-family:"Times New Roman",serif;
"Times New Roman";color:black'> can be <span class=SpellE>seen</span> in figure
+
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></p>
1.&nbsp;</span><span style='font-size:12.0pt;font-family:"Times New Roman",serif;
+
mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
+
  
<p class="MsoNormal" align="center" style='margin-top:12.0pt;margin-right:0cm;
+
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
+
style='font-size:12.0pt;font-family:"Times New Roman",serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-no-proof:yes'>
+
"Times New Roman";mso-no-proof:yes'><img width=597 height=428
<img width=523 height=377
+
src="https://2021.igem.org/wiki/images/b/b2/T--TecCEM--CharacterizationUpdate2.jpg"
src="https://2021.igem.org/wiki/images/1/17/T--TecCEM--PartRegisterImage002.jpg"
+
alt="Interfaz de usuario gráfica, Aplicación, Word, Excel&#10;&#10;Descripción generada automáticamente"
alt="Imagen que contiene Interfaz de usuario gráfica&#10;&#10;Descripción generada automáticamente"
+
v:shapes="_x0000_i1032"></span><span style='font-size:12.0pt;
v:shapes="Imagen_x0020_13"><![endif]></span><span style='font-size:12.0pt;
+
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
<p class="MsoNormal" align=center style='margin-top:12.0pt;margin-right:0cm;
+
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><b><span
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><b><span
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
Line 101: Line 100:
 
induction with IPTG so our results and experience using this part was different
 
induction with IPTG so our results and experience using this part was different
 
from what 2019 <span class=SpellE>PuiChing</span> Macau’s team reported
 
from what 2019 <span class=SpellE>PuiChing</span> Macau’s team reported
previously.&nbsp;</span><span lang=EN-US style='font-size:12.0pt;font-family:
+
previously, since they found no expression and a lack of an IPTG functional
"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";mso-ansi-language:
+
protein.&nbsp;</span><span lang=EN-US style='font-size:12.0pt;font-family:"Times New Roman",serif;
EN-US'><o:p></o:p></span></p>
+
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></p>
  
 
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
 
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
Line 109: Line 108:
 
line-height:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;
 
line-height:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;
 
mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-US'>To
 
mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-US'>To
prove that the Laccase was being expressed, we conducted a colorimetric assay
+
demonstrate activity of the <span class=SpellE>lacasse</span> purified, we
involving three colorants that act as a substrate: methylene blue, malachite
+
conducted a dye degradation assay. Owing to their broad substrate specificity,
green and rose <span class=SpellE>bengal</span>. We based this experiment upon
+
laccases have attracted considerable interest in terms of applications to many
the findings of D. Singh et al. (2014) [1], in which they used agar plates with
+
fields, such as environmental detoxification. Some fungal laccases have been
these colorants to determine the expression of Laccases in a medium. The first
+
reported to perform dye decolorization of a variety of dyes, such as azo,
assays we conducted were only to find out if there was any color change with
+
anthraquinone, and aromatic methane. Synthetic dyes are widely used in several
the presence of our extracted Laccase either from the cytoplasmic soluble
+
industries, including textiles, food processing, paper printing, cosmetics, and
fraction or from the culture medium. We used Citrate Buffer and found a change
+
pharmaceuticals. Three dyes were selected according to previous reports of
of color in different samples of Laccase after its purification using Ni
+
laccase degradation, malachite green, methylene blue and rose Bengal (<span
Affinity. We also verified that the effect we saw wasn’t related to a change in
+
class=SpellE>Cheriaa</span> J. &amp; <span class=SpellE>Bakhrouf</span> A.,
<span class=SpellE>pH.</span> </span><span class=SpellE><span style='font-size:
+
2009 [1]; <span class=SpellE>Forootanfar</span>, H., 2012; <span class=SpellE>Pramanik</span>,
10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:"Times New Roman";
+
S., &amp; Chaudhuri, S. 2018 [2]). Based on the chemical structure of
color:black'>The</span></span><span style='font-size:10.0pt;font-family:"Arial",sans-serif;
+
chromogenic groups, dyes are classified as azo, heterocyclic/polymeric or
mso-fareast-font-family:"Times New Roman";color:black'> <span class=SpellE>results</span>
+
triphenylmethanes. About 60% of produced dyes belong to the azo group which are
are <span class=SpellE>available</span> in figure 2.&nbsp;</span><span
+
categorized as <span class=SpellE>monoazo</span>, diazo, and <span
style='font-size:12.0pt;font-family:"Times New Roman",serif;mso-fareast-font-family:
+
class=SpellE>triazo</span> dyes. Malachite green is a triphenylmethane dye
"Times New Roman"'><o:p></o:p></span></p>
+
belonging to a basic dyes class, used extensively for dyeing silk, <span
 +
class=GramE>wool</span> and cotton. Rose Bengal, an Azo dye is used in
 +
apoptosis assays, biological staining photography, recording industry, etc.,
 +
this dye is genotoxic and microbial toxic. Methylene blue is a heterocyclic
 +
aromatic compound that has a wide use in biological and medicine applications
 +
in addition to textile-processing industries. To prove that the Laccase was
 +
being expressed, we conducted a dye degradation involving three colorants that
 +
act as a substrate: methylene blue, malachite green and rose <span
 +
class=SpellE>bengal</span>. We based this experiment upon the findings of D.
 +
Singh et al. (2014) [3], in which they used agar plates with these colorants to
 +
determine the expression of Laccases in a medium. The first assays we conducted
 +
were only to find out if there was any color change with the presence of our
 +
extracted Laccase either from the cytoplasmic soluble fraction or from the
 +
culture medium. We used Citrate Buffer and found a change of color in different
 +
samples of Laccase after its purification using Ni Affinity. We also verified
 +
that the effect we saw wasn’t related to a change in <span class=SpellE>pH.</span>
 +
</span><span class=SpellE><span style='font-size:10.0pt;font-family:"Arial",sans-serif;
 +
mso-fareast-font-family:"Times New Roman";color:black'>The</span></span><span
 +
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 +
"Times New Roman";color:black'> <span class=SpellE>results</span> are <span
 +
class=SpellE>available</span> in figure 2.&nbsp;<o:p></o:p></span></p>
 +
 
 +
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
 +
12.0pt;margin-left:0cm;text-align:justify;text-justify:inter-ideograph;
 +
line-height:normal'><span style='font-size:12.0pt;font-family:"Times New Roman",serif;
 +
mso-fareast-font-family:"Times New Roman"'><o:p>&nbsp;</o:p></span></p>
  
 
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
 
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
+
style='font-size:12.0pt;font-family:"Times New Roman",serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-no-proof:yes'><img width=516 height=435
+
"Times New Roman";mso-no-proof:yes'><img width=706 height=614
src="https://2021.igem.org/wiki/images/8/81/T--TecCEM--PartRegisterImage003.png"
+
src="https://2021.igem.org/wiki/images/3/36/T--TecCEM--CharacterizationUpdate4.jpg"
alt="Imagen que contiene Interfaz de usuario gráfica&#10;&#10;Descripción generada automáticamente"
+
alt="Interfaz de usuario gráfica, Aplicación&#10;&#10;Descripción generada automáticamente"
v:shapes="Imagen_x0020_12"><![endif]></span><span style='font-size:12.0pt;
+
v:shapes="Imagen_x0020_4"></span><span style='font-size:12.0pt;
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
Line 141: Line 165:
 
"Times New Roman";color:black;mso-ansi-language:EN-US'>Figure 2. </span></b><span
 
"Times New Roman";color:black;mso-ansi-language:EN-US'>Figure 2. </span></b><span
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-ansi-language:EN-US'>In section a) we can see
+
"Times New Roman";color:black;mso-ansi-language:EN-US'>First dye degradation
the change of color of the substrates used (methylene blue, malachite green and
+
assay conducted. In section a) we can see the change of color of the substrates
rose <span class=SpellE>bengal</span> from left to right). a)-I. corresponds to
+
used (methylene blue, malachite green and rose <span class=SpellE>bengal</span>
the cytoplasm soluble fraction while a)-II. corresponds to the secreted protein
+
from left to right). a)-I. corresponds to the cytoplasm soluble fraction while
from the culture medium. In section b) we can see that the pH remained
+
a)-II. corresponds to the secreted protein from the culture medium. In section
unchanged throughout the assay.&nbsp;</span><span lang=EN-US style='font-size:
+
b) we can see that the pH remained unchanged throughout the assay.&nbsp;</span><span
12.0pt;font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";
+
lang=EN-US style='font-size:12.0pt;font-family:"Times New Roman",serif;
mso-ansi-language:EN-US'><o:p></o:p></span></p>
+
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></p>
  
 
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
 
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
Line 155: Line 179:
 
mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-US'>After
 
mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-US'>After
 
this first assay, we decided that we had to establish a purification protocol
 
this first assay, we decided that we had to establish a purification protocol
through which we could get the most enzyme possible. We used a Ni Affinity Column
+
through which we could get the most enzyme possible. We used a Ni Affinity
and a system of recollection of the different phases. We collected the enzyme
+
Column and a system of recollection of the different phases. We collected the
from both the culture medium and the cytoplasmic soluble fraction and measured
+
enzyme from both the culture medium and the cytoplasmic soluble fraction and
the absorbance of the fractions collected at 280 nm. In total, we got 21
+
measured the absorbance of the fractions collected at 280 nm. In total, we got
fractions for the cytoplasm proteins and 20 fractions for the culture medium.
+
21 fractions for the cytoplasm proteins and 20 fractions for the culture
The purification conditions were established using a growing elution buffer
+
medium. The purification conditions were established using a growing elution
concentration. </span><span class=SpellE><span style='font-size:10.0pt;
+
buffer concentration. </span><span class=SpellE><span style='font-size:10.0pt;
 
font-family:"Arial",sans-serif;mso-fareast-font-family:"Times New Roman";
 
font-family:"Arial",sans-serif;mso-fareast-font-family:"Times New Roman";
 
color:black'>These</span></span><span style='font-size:10.0pt;font-family:"Arial",sans-serif;
 
color:black'>These</span></span><span style='font-size:10.0pt;font-family:"Arial",sans-serif;
Line 179: Line 203:
 
src="https://2021.igem.org/wiki/images/9/90/T--TecCEM--PartRegisterImage004.png"
 
src="https://2021.igem.org/wiki/images/9/90/T--TecCEM--PartRegisterImage004.png"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
v:shapes="Imagen_x0020_11"><![endif]></span><span style='font-size:12.0pt;
+
v:shapes="Imagen_x0020_11"></span><span style='font-size:12.0pt;
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
Line 187: Line 211:
 
"Times New Roman";color:black;mso-ansi-language:EN-US'>Figure 3. </span></b><span
 
"Times New Roman";color:black;mso-ansi-language:EN-US'>Figure 3. </span></b><span
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-ansi-language:EN-US'>Chromatogram of the
+
"Times New Roman";color:black;mso-ansi-language:EN-US'>Chromatogram of the purification
purification of the cytoplasmic soluble fraction showing the spike of
+
of the cytoplasmic soluble fraction showing the spike of absorbance in an
absorbance in an elution volume of around 15 mL to 20 mL (with a percentage of
+
elution volume of around 15 mL to 20 mL (with a percentage of elution buffer of
elution buffer of around 30 to 50%); corresponding to the fractions containing
+
around 30 to 50%); corresponding to the fractions containing the Laccase.&nbsp;</span><span
the Laccase.&nbsp;</span><span lang=EN-US style='font-size:12.0pt;font-family:
+
lang=EN-US style='font-size:12.0pt;font-family:"Times New Roman",serif;
"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";mso-ansi-language:
+
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></p>
EN-US'><o:p></o:p></span></p>
+
  
 
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
 
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-no-proof:yes'>
+
"Times New Roman";color:black;mso-no-proof:yes'><img width=484 height=289
><img width=484 height=289
+
 
src="https://2021.igem.org/wiki/images/1/19/T--TecCEM--PartRegisterImage005.png"
 
src="https://2021.igem.org/wiki/images/1/19/T--TecCEM--PartRegisterImage005.png"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
v:shapes="Imagen_x0020_10"><![endif]></span><span style='font-size:12.0pt;
+
v:shapes="Imagen_x0020_10"></span><span style='font-size:12.0pt;
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
Line 255: Line 277:
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-no-proof:yes'>
+
"Times New Roman";color:black;mso-no-proof:yes'><img width=484 height=288
<img width=484 height=288
+
 
src="https://2021.igem.org/wiki/images/7/7d/T--TecCEM--PartRegisterImage006.png"
 
src="https://2021.igem.org/wiki/images/7/7d/T--TecCEM--PartRegisterImage006.png"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
v:shapes="Imagen_x0020_9"><![endif]></span><span style='font-size:12.0pt;
+
v:shapes="Imagen_x0020_9"></span><span style='font-size:12.0pt;
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
Line 278: Line 299:
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-no-proof:yes'>
+
"Times New Roman";color:black;mso-no-proof:yes'><img width=484 height=332
<img width=484 height=332
+
 
src="https://2021.igem.org/wiki/images/5/56/T--TecCEM--PartRegisterImage007.png"
 
src="https://2021.igem.org/wiki/images/5/56/T--TecCEM--PartRegisterImage007.png"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
v:shapes="Imagen_x0020_8"><![endif]></span><span style='font-size:12.0pt;
+
v:shapes="Imagen_x0020_8"></span><span style='font-size:12.0pt;
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
Line 301: Line 321:
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
margin-bottom:12.0pt;margin-left:0cm;text-align:center;line-height:normal'><span
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
"Times New Roman";color:black;mso-no-proof:yes'>
+
"Times New Roman";color:black;mso-no-proof:yes'><img width=484 height=345
<img width=484 height=345
+
 
src="https://2021.igem.org/wiki/images/5/51/T--TecCEM--PartRegisterImage008.png"
 
src="https://2021.igem.org/wiki/images/5/51/T--TecCEM--PartRegisterImage008.png"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
 
alt="Gráfico, Gráfico de líneas&#10;&#10;Descripción generada automáticamente"
v:shapes="Imagen_x0020_7"><![endif]></span><span style='font-size:12.0pt;
+
v:shapes="Imagen_x0020_7"></span><span style='font-size:12.0pt;
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
Line 328: Line 347:
 
Malachite Green, the Laccase from <span class=SpellE>Trametes</span> versicolor
 
Malachite Green, the Laccase from <span class=SpellE>Trametes</span> versicolor
 
had a higher degradation rate. Finally, for Rose Bengal we observed a similar
 
had a higher degradation rate. Finally, for Rose Bengal we observed a similar
trend between <span class=SpellE><i>Trametes</i></span><i> versicolor</i>
+
trend between <span class=SpellE><i>Trametes</i></span><i> versicolor</i> Laccase
Laccase and the Soluble Fraction Laccase (before purification). We then
+
and the Soluble Fraction Laccase (before purification). We then reported the
reported the percentage of degradation of each sample for each colorant at the
+
percentage of degradation of each sample for each colorant at the final point
final point in time and got the next results:</span><span lang=EN-US
+
in time and got the next results:</span><span lang=EN-US style='font-size:12.0pt;
style='font-size:12.0pt;font-family:"Times New Roman",serif;mso-fareast-font-family:
+
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";
"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></p>
+
mso-ansi-language:EN-US'><o:p></o:p></span></p>
  
 
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
 
<p class=MsoNormal align=center style='margin-top:12.0pt;margin-right:0cm;
Line 339: Line 358:
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
style='font-size:10.0pt;font-family:"Arial",sans-serif;mso-fareast-font-family:
 
"Times New Roman";color:black;mso-no-proof:yes'><img width=520 height=442
 
"Times New Roman";color:black;mso-no-proof:yes'><img width=520 height=442
src="https://2021.igem.org/wiki/images/f/fd/T--TecCEM--PartRegisterImage009.png"
+
    src="https://2021.igem.org/wiki/images/f/fd/T--TecCEM--PartRegisterImage009.png"
 
alt="Gráfico, Gráfico de barras&#10;&#10;Descripción generada automáticamente"
 
alt="Gráfico, Gráfico de barras&#10;&#10;Descripción generada automáticamente"
v:shapes="Imagen_x0020_6"><![endif]></span><span style='font-size:12.0pt;
+
v:shapes="Imagen_x0020_6"></span><span style='font-size:12.0pt;
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
 
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p>
  
Line 365: Line 384:
 
prepared at 1 mg/mL (compared to the purified Laccases which had concentrations
 
prepared at 1 mg/mL (compared to the purified Laccases which had concentrations
 
of 0.334 µg/mL in the culture medium and 0.1298 µg/mL in the soluble
 
of 0.334 µg/mL in the culture medium and 0.1298 µg/mL in the soluble
fraction.&nbsp;</span><span lang=EN-US style='font-size:12.0pt;font-family:
+
fraction.&nbsp;<o:p></o:p></span></p>
"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";mso-ansi-language:
+
 
EN-US'><o:p></o:p></span></p>
+
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
 +
12.0pt;margin-left:0cm;text-align:justify;text-justify:inter-ideograph;
 +
line-height:normal'><span lang=EN-US style='font-size:10.0pt;font-family:"Arial",sans-serif;
 +
mso-fareast-font-family:"Times New Roman";color:black;mso-ansi-language:EN-US'>In
 +
conclusion we found that the best degradation profile was that of dye malachite
 +
green which was degraded almost 100% with the commercial Laccase. However, the
 +
most consistent results were obtained from methylene blue and show a similar
 +
trend of its percentage of degradation for every fraction analyzed. We saw that
 +
Laccases that come from different sources may have a different efficiency of
 +
degradation for different substrates, hence the importance of characterizing
 +
them. <o:p></o:p></span></p>
 +
 
 +
<p class=MsoNormal style='margin-top:12.0pt;margin-right:0cm;margin-bottom:
 +
12.0pt;margin-left:0cm;text-align:justify;text-justify:inter-ideograph;
 +
line-height:normal'><b><span lang=EN-US style='font-size:10.0pt;font-family:
 +
"Arial",sans-serif;mso-fareast-font-family:"Times New Roman";color:black;
 +
mso-ansi-language:EN-US'>References: </span></b><b><span lang=EN-US
 +
style='font-size:12.0pt;font-family:"Times New Roman",serif;mso-fareast-font-family:
 +
"Times New Roman";mso-ansi-language:EN-US'><o:p></o:p></span></b></p>
 +
 
 +
<p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;line-height:107%;
 +
font-family:"Arial",sans-serif;color:black;mso-ansi-language:EN-US'>[1] <span
 +
class=SpellE>Cheriaa</span>, J., &amp; <span class=SpellE>Bakhrouf</span>, A. “Triphenylmethanes,
 +
malachite green and crystal violet dyes <span class=SpellE>decolourisation</span>
 +
by <span class=SpellE>Sphingomonas</span> <span class=SpellE>paucimobilis</span>”.&nbsp;Annals
 +
of microbiology,&nbsp;59(1), 57-61. 2009<o:p></o:p></span></p>
 +
 
 +
<p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;line-height:107%;
 +
font-family:"Arial",sans-serif;color:black;mso-ansi-language:EN-US'>[2] <span
 +
class=SpellE>Forootanfar</span>, H., <span class=SpellE>Moezzi</span>, A., <span
 +
class=SpellE>Aghaie-Khozani</span>, M., <span class=SpellE>Mahmoudjanlou</span>,
 +
Y., Ameri, A., <span class=SpellE>Niknejad</span>, F., &amp; <span
 +
class=SpellE>Faramarzi</span>, M. A. “Synthetic dye decolorization by three
 +
sources of fungal laccase”.&nbsp;Iranian journal of environmental health
 +
science &amp; engineering,&nbsp;9(1), 1-10. 2012.<o:p></o:p></span></p>
 +
 
 +
<p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;line-height:107%;
 +
font-family:"Arial",sans-serif;color:black;mso-ansi-language:EN-US'>[3] D.
 +
Singh et al., “Isolation, Characterization and Production of Bacterial Laccase
 +
from Bacillus <span class=SpellE>sp</span>”, 06 2014, <span class=SpellE>bll</span>
 +
439–450. 2014.<o:p></o:p></span></p>
 +
 
 +
<p class=MsoNormal><span lang=EN-US style='font-size:10.0pt;line-height:107%;
 +
font-family:"Arial",sans-serif;color:black;mso-ansi-language:EN-US'><o:p>&nbsp;</o:p></span></p>
  
 
<p class=MsoNormal><span lang=EN-US style='mso-ansi-language:EN-US'><o:p>&nbsp;</o:p></span></p>
 
<p class=MsoNormal><span lang=EN-US style='mso-ansi-language:EN-US'><o:p>&nbsp;</o:p></span></p>

Latest revision as of 18:32, 21 October 2021

tthl laccase from Thermus thermophilus with T7 promoter, RBS and His-tag

tthl (Laccase from Thermus thermophilus) with T7, RBS and HIS tag


Usage and Biology

Slovenia HS characterized this part in 2015.

Escherichia coli BL21 (DE3) bacteria were transformed with the expression plasmids (BBa_K863005 and BBa_K863010) and grown in 10 ml at 37 °C in LBC medium overnight. To express both recombinant proteins, 10 ml of overnight cultures shaker cultures were grown at 37 °C in LB broth supplemented with 30 µg/ml chloramphenicol and shaking with 225 rpm. Expression of the recombinant protein was induced by addition of IPTG to a final concentration of 1 mM, when the cell density reached an OD600 of 0.8. After induction, cells were grown for 5 h and then collected by centrifugation at 6000g for 10 min. The cell pellet collected from 400 ml of bacterial culture was resuspended in 20 ml of resuspension buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 20 mM imidazole) and sonified 3 × 6 min on ice. Following centrifugation at 30 000 × g for 10 min to remove insoluble debris, the supernatant was applied to a Ni-NTA Superflow Cartridge (Qiagen) connected to ÄKTA FPLC system, washed with the resuspension buffer and eluted in the same buffer, but containing 250 mM imidazole. The peak fractions were collected and 15 µl of each fraction was collected and resolved on 12 % SDS-PAGE.


293px-Lakaze.jpeg 160px-Lakaza_po_3%2C6_urah.jpeg


We found that while BBa_K863005 shows excellent activity, BBa_K863010 shows no activity under the same conditions.



IPTG Induction of K863010 (2019 PuiChing_Macau)

Figure 1. Western Blot and SDS-PAGE (coomassie blue) of K863000 and K863010 laccase. Both laccase should be with His-tag.

Consistent with characterization by previous iGEM teams, we found no expression of laccase with K863010 plasmid (contains a fungal laccase, expected to be IPTG regulated), as shown in Figure 1. To the best of our knowledge, there is no functional IPTG-regulated fungal laccase in the iGEM part registry. We here successfully add one (K3021002), as an improvement of the part K863010, which cannot be expressed. For detail information of K3021002, refer to 2019 PuiChing_Macau K3021002

Team TecCEM Characterization

TecCEM Characterization, purification and degradation of dyes

For the characterization of the Laccase BBa_K863010 we conducted an IPTG induction experiment in which we transformed the plasmid pSB1C3 containing the Laccase in E. coli BL21-DE3. We thought that we could use another strain called SoluBL21 but results were not successful as no expression was found. We verified the presence of the protein through an SDS-PAGE with a gel concentration of 12% and found a visible band with a mass of around 50 kDa. We also analyzed soluble and insoluble fractions and the presence of protein in the culture medium. This can be seen in figure 1. 

Interfaz de usuario gráfica, Aplicación, Word, Excel

Descripción generada automáticamente

Figure 1. The lanes correspond to the following. M: Molecular weight marker; 1: Total protein after induction; 2: Total protein before induction; 3: Protein found in the Culture Medium after induction; 4: Cytoplasmic soluble fraction; 5: Inclusion bodies of the insoluble fraction; 6: Concentrated Culture Medium after induction. The band observed in lanes 1, 3 and 6 weighs around 48 kDa and corresponds to the expected size. 

We found that the protein was mostly found on the culture medium but can also be found on the cytoplasmic soluble fraction. The band that was appreciated in figure 1. indicates that there’s an expression of the Laccase after it’s induction with IPTG so our results and experience using this part was different from what 2019 PuiChing Macau’s team reported previously, since they found no expression and a lack of an IPTG functional protein. 

To demonstrate activity of the lacasse purified, we conducted a dye degradation assay. Owing to their broad substrate specificity, laccases have attracted considerable interest in terms of applications to many fields, such as environmental detoxification. Some fungal laccases have been reported to perform dye decolorization of a variety of dyes, such as azo, anthraquinone, and aromatic methane. Synthetic dyes are widely used in several industries, including textiles, food processing, paper printing, cosmetics, and pharmaceuticals. Three dyes were selected according to previous reports of laccase degradation, malachite green, methylene blue and rose Bengal (Cheriaa J. & Bakhrouf A., 2009 [1]; Forootanfar, H., 2012; Pramanik, S., & Chaudhuri, S. 2018 [2]). Based on the chemical structure of chromogenic groups, dyes are classified as azo, heterocyclic/polymeric or triphenylmethanes. About 60% of produced dyes belong to the azo group which are categorized as monoazo, diazo, and triazo dyes. Malachite green is a triphenylmethane dye belonging to a basic dyes class, used extensively for dyeing silk, wool and cotton. Rose Bengal, an Azo dye is used in apoptosis assays, biological staining photography, recording industry, etc., this dye is genotoxic and microbial toxic. Methylene blue is a heterocyclic aromatic compound that has a wide use in biological and medicine applications in addition to textile-processing industries. To prove that the Laccase was being expressed, we conducted a dye degradation involving three colorants that act as a substrate: methylene blue, malachite green and rose bengal. We based this experiment upon the findings of D. Singh et al. (2014) [3], in which they used agar plates with these colorants to determine the expression of Laccases in a medium. The first assays we conducted were only to find out if there was any color change with the presence of our extracted Laccase either from the cytoplasmic soluble fraction or from the culture medium. We used Citrate Buffer and found a change of color in different samples of Laccase after its purification using Ni Affinity. We also verified that the effect we saw wasn’t related to a change in pH. The results are available in figure 2. 

 

Interfaz de usuario gráfica, Aplicación

Descripción generada automáticamente

Figure 2. First dye degradation assay conducted. In section a) we can see the change of color of the substrates used (methylene blue, malachite green and rose bengal from left to right). a)-I. corresponds to the cytoplasm soluble fraction while a)-II. corresponds to the secreted protein from the culture medium. In section b) we can see that the pH remained unchanged throughout the assay. 

After this first assay, we decided that we had to establish a purification protocol through which we could get the most enzyme possible. We used a Ni Affinity Column and a system of recollection of the different phases. We collected the enzyme from both the culture medium and the cytoplasmic soluble fraction and measured the absorbance of the fractions collected at 280 nm. In total, we got 21 fractions for the cytoplasm proteins and 20 fractions for the culture medium. The purification conditions were established using a growing elution buffer concentration. These conditions are shown in figures 3 and 4.

 

Gráfico, Gráfico de líneas

Descripción generada automáticamente

Figure 3. Chromatogram of the purification of the cytoplasmic soluble fraction showing the spike of absorbance in an elution volume of around 15 mL to 20 mL (with a percentage of elution buffer of around 30 to 50%); corresponding to the fractions containing the Laccase. 

Gráfico, Gráfico de líneas

Descripción generada automáticamente

Figure 4. Chromatogram of the purification of the culture medium showing the spike of absorbance in an elution volume of 12 mL to 20 mL (with a percentage of elution buffer of around 16% to 50%); corresponding to the fractions containing the Laccase. 

Finally, we conducted a last assay in which we first quantified the amount of protein recovered through a BCA quantification protocol. Using this protocol and with the elaboration of a BCA curve, we estimated that we recovered 0.334 µg/mL of Laccase in the culture medium while for the cytoplasmic soluble fraction we obtained 0.1298 µg/mL of Laccase. This was consistent with the results we got from the chromatograms. 

For the final colorimetric assay we conducted, we quantified the activity of the Laccase obtained from the purification. We compared it with a Commercial Laccase from Sigma belonging to Trametes versicolor and used the spectrophotometer to measure methylene blue, malachite green and rose bengal at 664, 617 and 562 nm respectively. Since we didn’t quite have the exact concentration of colorants in our samples, we limited to measure the activity as a percentage of degradation of each colorant where a 100% of substrate would be the absorbance of the control of the blue, green and rose colorants and the enzymatic degradation would be expressed as the loss of color. The results can be seen below.

Gráfico, Gráfico de líneas

Descripción generada automáticamente

Figure 5. Percentage of degradation of Methylene Blue through time for the Laccase in the culture medium (blue), soluble fraction (orange), purified culture medium (yellow), purified soluble fraction (light blue) and the Laccase from Trametes versicolor (gray).

Gráfico, Gráfico de líneas

Descripción generada automáticamente

Figure 6. Percentage of degradation of Malachite green through time for the Laccase in the culture medium (blue), soluble fraction (orange), purified culture medium (yellow), purified soluble fraction (light blue) and the Laccase from Trametes versicolor (gray).

Gráfico, Gráfico de líneas

Descripción generada automáticamente

Figure 7. Percentage of degradation of Rose Bengal through time for the Laccase in the culture medium (blue), soluble fraction (orange), purified culture medium (yellow), purified soluble fraction (light blue) and the Laccase from Trametes versicolor (gray).

In the assays, we saw a similar trend for the degradation of Methylene Blue. For Malachite Green, the Laccase from Trametes versicolor had a higher degradation rate. Finally, for Rose Bengal we observed a similar trend between Trametes versicolor Laccase and the Soluble Fraction Laccase (before purification). We then reported the percentage of degradation of each sample for each colorant at the final point in time and got the next results:

Gráfico, Gráfico de barras

Descripción generada automáticamente

Figure 8. Percentage of degradation of each Laccase at the final point in time for each colorant. 

We observed that overall, the best results were obtained by the Laccase of Trametes versicolor (as expected) followed by the soluble fraction and the purified soluble fraction. However, it is worth noting that although these results show that the commercial Laccase may have higher degradation values, it also has a higher concentration since it was prepared at 1 mg/mL (compared to the purified Laccases which had concentrations of 0.334 µg/mL in the culture medium and 0.1298 µg/mL in the soluble fraction. 

In conclusion we found that the best degradation profile was that of dye malachite green which was degraded almost 100% with the commercial Laccase. However, the most consistent results were obtained from methylene blue and show a similar trend of its percentage of degradation for every fraction analyzed. We saw that Laccases that come from different sources may have a different efficiency of degradation for different substrates, hence the importance of characterizing them.

References:

[1] Cheriaa, J., & Bakhrouf, A. “Triphenylmethanes, malachite green and crystal violet dyes decolourisation by Sphingomonas paucimobilis”. Annals of microbiology, 59(1), 57-61. 2009

[2] Forootanfar, H., Moezzi, A., Aghaie-Khozani, M., Mahmoudjanlou, Y., Ameri, A., Niknejad, F., & Faramarzi, M. A. “Synthetic dye decolorization by three sources of fungal laccase”. Iranian journal of environmental health science & engineering, 9(1), 1-10. 2012.

[3] D. Singh et al., “Isolation, Characterization and Production of Bacterial Laccase from Bacillus sp”, 06 2014, bll 439–450. 2014.

 

 

 

 

 

 

 


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 1408
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 475
    Illegal NgoMIV site found at 962
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 790