Difference between revisions of "Part:BBa K3904406"
Bernadeta A (Talk | contribs) (→Mechanism of genome editing) |
Bernadeta A (Talk | contribs) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
[[File:T--Vilnius-Lithuania--amebyeLogo dark.png|right|100px|AmeBye]] | [[File:T--Vilnius-Lithuania--amebyeLogo dark.png|right|100px|AmeBye]] | ||
− | Vilnius-Lithuania iGEM 2021 project [https://2021.igem.org/Team:Vilnius-Lithuania <b>AmeBye</b>]looks at amebiasis holistically and comprehensively, | + | Vilnius-Lithuania iGEM 2021 project [https://2021.igem.org/Team:Vilnius-Lithuania <b>AmeBye</b>]looks at amebiasis holistically and comprehensively, therefore target <i>E. histolytica</i> from several angles: prevention and diagnostics. Our team's preventive solution consists of probiotics engineered to produce naringenin - an antiprotozoal compound. Two strains of genetically modified microorganisms were chosen as the main chassis - world-renowned <i>Lactobacillus casei</i> BL23 (<i>Lactobacillus paracasei</i>) and <i>Escherichia coli</i> Nissle 1917. Furthermore, the team made specific gene deletions to enhance naringenin production and adapted a novel toxin-antitoxin system to prevent GMO spreads into the environment. The diagnostic part includes a rapid, point of care, user-friendly diagnostic test identifying extraintestinal amebiasis. The main components of this test are aptamers specific to the <i>E. histolytica</i> secreted proteins. These single-stranded DNA sequences fold into tertiary structures for particular fit with target proteins. |
__TOC__ | __TOC__ | ||
Line 13: | Line 13: | ||
=Usage and Biology= | =Usage and Biology= | ||
− | + | ||
==Mechanism of genome editing== | ==Mechanism of genome editing== | ||
Line 20: | Line 20: | ||
[[File:T--Vilnius-Lithuania--crisprcas92.png|right|500px|CRISPRCas9]] | [[File:T--Vilnius-Lithuania--crisprcas92.png|right|500px|CRISPRCas9]] | ||
− | pCas plasmid is used for Cas9, Lambda Red system expression, and plasmid curing of pTarget. Cas9 - the RNA-guided endonuclease - is expressed constitutively, while the expression of Lambda Red genes (Gam, Exo, Beta) is under the control of arabinose inducible promoter araBp. pTarget plasmid caries constitutively expressed single-guide RNA (sgRNA). This RNA molecule, as and in nature, is composed of 17-20 nt length guide RNA (gRNA) sequence complementary to the targeted DNA adjacent to the protospacer adjacent motif (PAM) present at the 3' end, and the scaffold for the Cas9 nuclease binding to sgRNA and forming the ribonucleoprotein complex (1). Although in nature sgRNA exists as two separate RNA molecules, in laboratory experiments they are usually combined into one single-guide RNA (sgRNA) obviating additional maturation steps. As both pCas and pTarget plasmids are in a cell, Cas9 nuclease and sgRNA are able to form ribonucleoprotein complex, scan DNA for PAM sequences and perform a double-strand break in a part of the DNA which is complementary to the gRNA and adjacent to the PAM sequence - NGG. However, if arabinose has been added to the cell culture and a double-stranded DNA repair template is present in the cell, the Lambda Red system performs homologous recombination. If this process is unsuccessful, the Cas9-sgRNA complex will cause a double-strand break and will cause cell death (2). This is employed as a counterselection in order to avoid the additional antibiotic as selection marker usage. | + | CRISPR-Cas9 is a versatile genome-editing technique. In our approach to editing <i>E. coli</i> Nissle 1917 genome, we have used two plasmid-based system enabling to combine of Lambda Red recombination and CRISPR-Cas9 as counterselection tools - [https://www.addgene.org/62225/ pCas] and [https://www.addgene.org/62226/ pTarget]. pCas plasmid is used for Cas9, Lambda Red system expression, and plasmid curing of pTarget. Cas9 - the RNA-guided endonuclease - is expressed constitutively, while the expression of Lambda Red genes (Gam, Exo, Beta) is under the control of arabinose inducible promoter araBp. pTarget plasmid caries constitutively expressed single-guide RNA (sgRNA). This RNA molecule, as and in nature, is composed of 17-20 nt length guide RNA (gRNA) sequence complementary to the targeted DNA adjacent to the protospacer adjacent motif (PAM) present at the 3' end, and the scaffold for the Cas9 nuclease binding to sgRNA and forming the ribonucleoprotein complex (1). Although in nature sgRNA exists as two separate RNA molecules, in laboratory experiments they are usually combined into one single-guide RNA (sgRNA) obviating additional maturation steps. As both pCas and pTarget plasmids are in a cell, Cas9 nuclease and sgRNA are able to form ribonucleoprotein complex, scan DNA for PAM sequences and perform a double-strand break in a part of the DNA which is complementary to the gRNA and adjacent to the PAM sequence - NGG. However, if arabinose has been added to the cell culture and a double-stranded DNA repair template is present in the cell, the Lambda Red system performs homologous recombination. If this process is unsuccessful, the Cas9-sgRNA complex will cause a double-strand break and will cause cell death (2). This is employed as a counterselection in order to avoid the additional antibiotic as selection marker usage. |
+ | |||
+ | |||
+ | Particularly, this part is used for homology directed repair then Cas9 introduces double strain break in <i>ackA</i> gene. This dsDNA introduces stop codons in all possible three reading frames in order to ensure the termination of <i>ackA</i> mRNA translation. Moreover, to facilitate transformants screening in this recombination template have been introduced restriction endonuclease BcuI recognition site. | ||
+ | |||
+ | |||
+ | |||
+ | <b>Table 1.</b> Parts collection for <i>ackA</i> knockout generation in <i>E. Coli</i> Nissle 1917. | ||
+ | |||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | |<b>Short description</b> | ||
+ | |<b>Part number</b> | ||
+ | |- | ||
+ | |ackA-specific sgRNA | ||
+ | |[https://parts.igem.org/Part:BBa_K3904401 BBa_K3904401] | ||
+ | |- | ||
+ | |Recombination template for <i>ackA</i> knockout | ||
+ | |[https://parts.igem.org/Part:BBa_K3904406 BBa_K3904406] | ||
+ | |- | ||
+ | |Forward <i>ackA</i> primer for homology template amplification | ||
+ | |[https://parts.igem.org/Part:BBa_K3904412 BBa_K3904412] | ||
+ | |- | ||
+ | |Reverse <i>ackA</i> primer for homology template amplification | ||
+ | |[https://parts.igem.org/Part:BBa_K3904413 BBa_K3904413] | ||
+ | |} | ||
+ | |||
+ | |||
==<i>ackA</i> gene knockout importance to AmeBye project== | ==<i>ackA</i> gene knockout importance to AmeBye project== |
Latest revision as of 03:25, 22 October 2021
Recombination template for ackA knockout
Introduction
Vilnius-Lithuania iGEM 2021 project AmeByelooks at amebiasis holistically and comprehensively, therefore target E. histolytica from several angles: prevention and diagnostics. Our team's preventive solution consists of probiotics engineered to produce naringenin - an antiprotozoal compound. Two strains of genetically modified microorganisms were chosen as the main chassis - world-renowned Lactobacillus casei BL23 (Lactobacillus paracasei) and Escherichia coli Nissle 1917. Furthermore, the team made specific gene deletions to enhance naringenin production and adapted a novel toxin-antitoxin system to prevent GMO spreads into the environment. The diagnostic part includes a rapid, point of care, user-friendly diagnostic test identifying extraintestinal amebiasis. The main components of this test are aptamers specific to the E. histolytica secreted proteins. These single-stranded DNA sequences fold into tertiary structures for particular fit with target proteins.
Contents
Usage and Biology
Mechanism of genome editing
CRISPR-Cas9 is a versatile genome-editing technique. In our approach to editing E. coli Nissle 1917 genome, we have used two plasmid-based system enabling to combine of Lambda Red recombination and CRISPR-Cas9 as counterselection tools - pCas and pTarget. pCas plasmid is used for Cas9, Lambda Red system expression, and plasmid curing of pTarget. Cas9 - the RNA-guided endonuclease - is expressed constitutively, while the expression of Lambda Red genes (Gam, Exo, Beta) is under the control of arabinose inducible promoter araBp. pTarget plasmid caries constitutively expressed single-guide RNA (sgRNA). This RNA molecule, as and in nature, is composed of 17-20 nt length guide RNA (gRNA) sequence complementary to the targeted DNA adjacent to the protospacer adjacent motif (PAM) present at the 3' end, and the scaffold for the Cas9 nuclease binding to sgRNA and forming the ribonucleoprotein complex (1). Although in nature sgRNA exists as two separate RNA molecules, in laboratory experiments they are usually combined into one single-guide RNA (sgRNA) obviating additional maturation steps. As both pCas and pTarget plasmids are in a cell, Cas9 nuclease and sgRNA are able to form ribonucleoprotein complex, scan DNA for PAM sequences and perform a double-strand break in a part of the DNA which is complementary to the gRNA and adjacent to the PAM sequence - NGG. However, if arabinose has been added to the cell culture and a double-stranded DNA repair template is present in the cell, the Lambda Red system performs homologous recombination. If this process is unsuccessful, the Cas9-sgRNA complex will cause a double-strand break and will cause cell death (2). This is employed as a counterselection in order to avoid the additional antibiotic as selection marker usage.
Particularly, this part is used for homology directed repair then Cas9 introduces double strain break in ackA gene. This dsDNA introduces stop codons in all possible three reading frames in order to ensure the termination of ackA mRNA translation. Moreover, to facilitate transformants screening in this recombination template have been introduced restriction endonuclease BcuI recognition site.
Table 1. Parts collection for ackA knockout generation in E. Coli Nissle 1917.
Short description | Part number |
ackA-specific sgRNA | BBa_K3904401 |
Recombination template for ackA knockout | BBa_K3904406 |
Forward ackA primer for homology template amplification | BBa_K3904412 |
Reverse ackA primer for homology template amplification | BBa_K3904413 |
ackA gene knockout importance to AmeBye project
ackA is one of the ackA-pta operon and disruption of this genomic region is known to limit the acetate formation from acetyl-CoA, increasing the cellular concentration of acetyl-CoA up to 16% (3). Increased concentration of this molecule theoretically should result in enhanced malonyl-CoA formation and consequently more effective naringenin synthesis since the amount of malonyl-CoA available in the cell is the limiting step of naringenin production (4).
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal SpeI site found at 131
- 12INCOMPATIBLE WITH RFC[12]Illegal SpeI site found at 131
- 21COMPATIBLE WITH RFC[21]
- 23INCOMPATIBLE WITH RFC[23]Illegal SpeI site found at 131
- 25INCOMPATIBLE WITH RFC[25]Illegal SpeI site found at 131
- 1000COMPATIBLE WITH RFC[1000]
References
- Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213).
- Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and environmental microbiology, 81(7), 2506-2514.
- Ku, J. T., Chen, A. Y., & Lan, E. I. (2020). Metabolic engineering design strategies for increasing acetyl-CoA flux. Metabolites, 10(4), 166.
- Wu, J., Du, G., Chen, J., & Zhou, J. (2015). Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Scientific reports, 5(1), 1-14.