Difference between revisions of "Part:BBa K3758000"
MichaelCWB (Talk | contribs) (→Usage and Biology) |
MichaelCWB (Talk | contribs) |
||
(112 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K3758000 short</partinfo> | <partinfo>BBa_K3758000 short</partinfo> | ||
+ | __TOC__ | ||
+ | <html> | ||
+ | <style> | ||
+ | .mw-body a.external, .link-https { padding-right: 0 } | ||
+ | #bodyContent a[href^="https://"], .link-https { padding-right: 0 } | ||
+ | </style> | ||
+ | </html> | ||
− | |||
− | + | ||
+ | ==Part Description== | ||
<p> | <p> | ||
− | This part was created using the Phytobrick Entry Vector with GFP dropout | + | This part was created using the Phytobrick Entry Vector with GFP dropout [https://parts.igem.org/Part:BBa_K2560002 BBa_K2560002] and was designed to be compatible with the Phytobrick assembly standard. This years BioBricks were either constructed via PCR from purified DNA samples using a CTAB based method <sup>[https://doi.org/10.1186/s42269-019-0066-1 <nowiki>[1]</nowiki>]</sup>, by primer annealing, primer annealing, and extension reactions or synthesized via IDT/Twist.</p> |
<p> | <p> | ||
− | All parts this year were produced to be used in the chloroplast of different plant species. For the characterization of these parts they were tested in chloroplast cell-free systems (ccfs) from either the same species or they were tested in ccfs from other plant species. Plastid parts offer the benefit of highly conserved regulatory sequences that can be used across species. Although characterizing chloroplast parts is a huge effort, in literature, it has been shown that plastid parts can be used across species to drive gene expression | + | All parts this year were produced to be used in the chloroplast of different plant species. For the characterization of these parts they were tested in chloroplast cell-free systems (ccfs) from either the same species or they were tested in ccfs from other plant species. Plastid parts offer the benefit of highly conserved regulatory sequences that can be used across species. Although characterizing chloroplast parts is a huge effort, in literature, it has been shown that plastid parts can be used across species to drive gene expression <sup>[https://doi.org/10.7554/eLife.13664 <nowiki>[2]</nowiki>]</sup>. We believe that based on this knowledge we can create valuable parts that can be screened for activity in our system with the final goal of building a variety of different parts. This collection shall help combat unwanted recombination events in vivo that sometimes impede the successful functionality of the genetic design. |
</p> | </p> | ||
<h3>The PEP Promoter</h3> | <h3>The PEP Promoter</h3> | ||
− | <p>Transcription in the chloroplast is mainly driven by two different RNA Polymerases: plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP).<br> | + | <p>Transcription in the chloroplast is mainly driven by two different RNA Polymerases: plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP). <br> |
− | The PEP is a bacterial-like polymerase that is a remnant of the | + | The PEP is a bacterial-like polymerase that is a remnant of the chloroplast’s cyanobacterial ancestor and is only capable of promoting gene expression in the plastid. These polymerases are able to interact with nuclear-encoded sigma factors and therefore are able to recognize bacterial promoter motives such as the -35 (TTGACA) and the Pribnow (TATAAT) box. Similar to bacteria there are different sigma factors promoting gene expression under different growth conditions. As the PEP is structurally more sophisticated there are even more peptides involved in DNA transcription that is not fully understood yet. |
+ | </p><br> | ||
<h3>The NEP Promoter</h3> | <h3>The NEP Promoter</h3> | ||
− | The NEP is a T3/T7 phage-like polymerase that is encoded in the nucleus and is imported into the chloroplast. It was proposed that this polymerase is a remnant of a horizontal gene transfer from a bacterium to a eubacterial ancestor of today's plant cells [ | + | <p> |
+ | The NEP is a T3/T7 phage-like polymerase that is encoded in the nucleus and is imported into the chloroplast. It was proposed that this polymerase is a remnant of a horizontal gene transfer from a bacterium to a eubacterial ancestor of today's plant cells <sup>[https://doi.org/10.1016/j.tim.2005.08.012 <nowiki>[3]</nowiki>]</sup> <sup>[https://doi.org/10.1007/4735_2007_0232 <nowiki>[4]</nowiki>]</sup>. This type of polymerase mainly promotes gene expression in the early developmental stages of the chloroplast. In mature chloroplasts, it continues to transcribe housekeeping genes like the subunits of the plastid-encoded polymerase (rpoA, rpoB, rpoC1, and rpoC2) and proteins involved in fatty acid biosynthesis such as acetyl-CoA carboxylase (accD). In contrast, the PEP is rather active in mature chloroplasts and is primarily involved in the expression of photosynthetic genes. For other non-photosynthetic genes, motives of both polymerases can be found and it has been shown that both can promote transcription using deletion studies of important promoter sequences <sup>[https://doi.org/10.1007/s00294-002-0293-z <nowiki>[5]</nowiki>]</sup> <sup>[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC166747/ <nowiki>[6]</nowiki>]</sup>. | ||
+ | </p> | ||
+ | |||
+ | ==Characterization & Measurement== | ||
+ | |||
+ | <h3>Batch effect</h3> | ||
+ | |||
+ | <p> | ||
+ | A major difficulty when working with cell free technology is the reproducibility of reliable data generation. While one batch of cell free extract generation might be perfectly suited for efficient protein production, other batches might not perform that well. Because our chloroplast extracts were prepared from leaves, each preparation could have contained distinct compositions of differentiated leaf cells (for example: | ||
+ | mesophyll, palisade parenchyma and bundle sheath) from plants that experienced microclimatic variations. This in turns causes the individual difference in expression strength, making it impossible to quantitatively compare data across measurements. | ||
+ | |||
+ | |||
+ | </p> | ||
+ | |||
+ | <h3>Dual Luciferase Normalization</h3> | ||
+ | |||
+ | <p> | ||
+ | |||
+ | To tackle the aforementioned issue, we designed our measurement construct to harbor two individual luciferase cassettes. A standardized cassette that includes the Firefly luciferase (FLuc) is included in every measurement construct in order to have a reference point to which we can normalize our gained data to<sup>[https://doi.org/10.1038/nmeth.3659 <nowiki>[14]</nowiki>] </sup>. | ||
+ | The second cassette consists of a Nano Luciferase (NLuc) harboring a placeholder part in either the promoter, 5’UTR or 3’UTR position. This enables quick exchange of a series of lvl0 parts allowing for high throughput characterization of genetic parts. | ||
+ | |||
+ | </p> | ||
+ | |||
+ | <html> | ||
+ | <center> | ||
+ | <figure> | ||
+ | <img src='https://static.igem.org/mediawiki/parts/3/31/T--Marburg--Dual_Luciferase_SBOL.svg' width='600px' alt='sfGFP_Cell-Free_Tobacco' /> | ||
+ | <figcaption><p><b>Figure 1: SBOL Visualization of our Dual Luciferase lvl2 measurement vector</b><br> | ||
+ | On the left you can see the inverted Firefly luciferase that is used for ratiometric normalization of our data.<br> | ||
+ | The right cassette shows the NanoLuc luciferase, in which Dropout sequences have been included for rapid exchange of parts in either the promoter, 5'UTR or 3'UTR position</figcaption> | ||
+ | </figure></center></html> | ||
+ | |||
+ | |||
+ | <h3>Placeholder</h3> | ||
+ | |||
+ | <p> | ||
+ | For the characterization of the parts produced this year, we made use of Golden Gate placeholder parts introduced by [http://2019.igem.org/Team:Marburg iGEM Marburg 2019]: | ||
+ | [https://parts.igem.org/Part:BBa_K3228060 BBa_K3228060], | ||
+ | [https://parts.igem.org/Part:BBa_K3228061 BBa_K3228061] and | ||
+ | [https://parts.igem.org/Part:BBa_K3228063 BBa_K3228063]. These placeholder parts can be used in assemblies to subsequently replace it with another part of the same type in a secondary Golden Gate assembly. A placeholder can rationalize large-scale assemblies: Instead of building each plasmid from scratch, a placeholder is used to generate an entry vector. | ||
+ | |||
+ | </p> | ||
+ | |||
+ | ==Results== | ||
+ | |||
+ | |||
+ | ==Marburg collection 3.0== | ||
+ | |||
+ | <p> | ||
+ | We proudly present the third expansion of the Marburg collection <sup>[https://doi.org/10.1021/acssynbio.1c00126 <nowiki>[15]</nowiki>]</sup>. The Marburg collection is a Golden Gate based toolbox containing various parts that are compatible with the PhytoBrick system and MoClo. Compared to other bacterial toolboxes, the Marburg Collection shines with superior flexibility. The collection overcame the rigid paradigm of plasmid construction - thinking in fixed backbone and insert categories - by achieving complete de novo assembly of plasmids. | ||
+ | 36 connectors facilitate flexible cloning of multigene constructs and even allow for the inversion of individual transcription units.<br><br> | ||
+ | The original [http://2018.igem.org/Team:Marburg/Part_Collection Marburg Collection] contains 123 parts in total, including: | ||
+ | inducible promoters, reporters, fluorescence and epitope tags, oris, resistance cassettes and genome engineering tools. The toolbox was constructed as a foundation for future iGEM teams to empower accelerated progression in their ambitious projects. | ||
+ | <br><br> | ||
+ | Our collection includes genetic parts suitable for use in the chloroplast. Among parts from the chloroplast of <i>Nicotiana tabacum</i>, we built parts from the chloroplast of <i>Spinacia oleracea</i>, <i>Oryza sativa</i>,<i>Triticum aestivum</i> and <i>Quercus robur</i>. With our contribution, we aim to accelerate research in the field of plastid engineering. | ||
+ | </p> | ||
+ | |||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
<partinfo>BBa_K3758000 SequenceAndFeatures</partinfo> | <partinfo>BBa_K3758000 SequenceAndFeatures</partinfo> | ||
+ | |||
<!--- | <!--- | ||
Line 29: | Line 94: | ||
<!-- --> | <!-- --> | ||
− | |||
− | |||
− | |||
− | [3] Suzuki, J. Y., Sriraman, P., Svab, Z., & Maliga, P. (2003). Unique Architecture of the Plastid Ribosomal RNA Operon Promoter Recognized by the Multisubunit RNA Polymerase in Tobacco and Other Higher Plants. The Plant Cell, 15(1), 195–205. https://doi.org/10.1105/tpc.007914 | + | ==Overview Marburg collection 3.0== |
+ | |||
+ | |||
+ | <div class="PCListIcon" style="display:flex;flex-direction:row; flex-wrap: nowrap; justify-content:space-evenly; align-items:flex-start;font-size:100%;"> | ||
+ | |||
+ | [[File:T--Marburg--5'Homology.png|120px|thumb|none| | ||
+ | |||
+ | <html> | ||
+ | <ul> | ||
+ | <b> | ||
+ | |||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758250">K3758250 </a><br> trnG 5'Homology Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758252">K3758252 </a><br> trnI 5'Homology Nt </li> | ||
+ | |||
+ | </b> | ||
+ | </ul> | ||
+ | </html>]] | ||
+ | |||
+ | [[File:T--Marburg--Promoter_Symbol.png|120px|thumb|none| | ||
+ | |||
+ | <html> | ||
+ | <ul> | ||
+ | <b> | ||
+ | |||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758000">K3758000 </a><br> Prrn (-64 to +17) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758001">K3758001 </a><br> Prrn (5fold decrease) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758002">K3758002 </a><br> PpsbA Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758003">K3758003 </a><br> PpsbA (-42 to +9) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758004">K3758004 </a><br> PpsbB Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758005">K3758005 </a><br> PpsbD-leader Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758006">K3758006 </a><br> PaccD (-84 to +23) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758007">K3758007 </a><br> PaccD (functional) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758008">K3758008 </a><br> PatpB (+NEP-PEP) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758009">K3758009 </a><br> PatpB (only NEP) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758010">K3758010 </a><br> PatpB (+NEP+PEP) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758011">K3758011 </a><br> PatpB (only PEP) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758012">K3758012 </a><br> PatpH Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758013">K3758013 </a><br> PatpI (PEP) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758014">K3758014 </a><br> PclpP (NEP) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758015">K3758015 </a><br> PclpP (PEP) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758016">K3758016 </a><br> PrbcL Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758017">K3758017 </a><br> PrbcL (core -35 to +9) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758018">K3758018 </a><br> PrpoB Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758019">K3758019 </a><br> Prrn1 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758020">K3758020 </a><br> Prrn2 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758021">K3758021 </a><br> Prrn3 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758022">K3758022 </a><br> Prrn5 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758023">K3758023 </a><br> Prrn6 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758024">K3758024 </a><br> Prrn7 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758025">K3758025 </a><br> Prrn8 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758026">K3758026 </a><br> Prrn9 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758027">K3758027 </a><br> Prrn10 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758028">K3758028 </a><br> Prrn12 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758029">K3758029 </a><br> Prrn13 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758030">K3758030 </a><br> Prrn14 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758031">K3758031 </a><br> Prrn15 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758032">K3758032 </a><br> Prrn16 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758033">K3758033 </a><br> Prrn17 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758034">K3758034 </a><br> Prrn18 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758035">K3758035 </a><br> Prrn19 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758036">K3758036 </a><br> Prrn20 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758037">K3758037 </a><br> Prrn21 (library) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758038">K3758038 </a><br> PpsbD Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758039">K3758039 </a><br> PpsbK Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758040">K3758040 </a><br> PpsbA Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758041">K3758041 </a><br> PrbcL Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758042">K3758042 </a><br> Prrn16 (short) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758043">K3758043 </a><br> Prrn16 (long) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758044">K3758044 </a><br> Prrn16 Ta </li> | ||
+ | |||
+ | </ul> | ||
+ | </b> | ||
+ | </html>]] | ||
+ | |||
+ | [[File:T--Marburg--5'UTR_Symbol.png|120px|thumb|none| | ||
+ | |||
+ | <html> | ||
+ | <ul> | ||
+ | <b> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758070">K3758070 </a><br> atpB 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758071">K3758071 </a><br> atpB 5'UTR (+10) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758072">K3758072 </a><br> atpB 5'UTR (-90 to +10 processed) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758073">K3758073 </a><br> atpB 5'UTR (TCR processed -90) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758074">K3758074 </a><br> atpH 5'UTR (-45 processed) 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758075">K3758075 </a><br> psbN 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758076">K3758076 </a><br> psbN 5'UTR (processed) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758077">K3758077 </a><br> psbB 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758078">K3758078 </a><br> ndhD 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758079">K3758079 </a><br> rps2 mAAGA 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758080">K3758080 </a><br> rps2 mCCUC 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758081">K3758081 </a><br> rps2 mAAGA 5'UTR (Δ -20 to -10) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758082">K3758082 </a><br> rps2 mCCUC 5'UTR (Δ -20 to -10) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758083">K3758083 </a><br> psbH 5'UTR (Startcodon + 1AA) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758084">K3758084 </a><br> psbA 5'UTR (SNM) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758085">K3758085 </a><br> psbA 5'UTR (SEM) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758086">K3758086 </a><br> psbA 5'UTR (ΔSL) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758087">K3758087 </a><br> psbA 5'UTR (Δ5'SL) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758088">K3758088 </a><br> psbA-rbcL 5'UTR (R'SLWT) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758089">K3758089 </a><br> rps14 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758090">K3758090 </a><br> rbcL 5'UTR (full) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758091">K3758091 </a><br> rbcL 5'UTR (processed) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758092">K3758092 </a><br> rbcL 5'UTR (+14AA) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758093">K3758093 </a><br> rrn16 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758094">K3758094 </a><br> rrn16 5'UTR (+37) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758095">K3758095 </a><br> psbA 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758096">K3758096 </a><br> Synthetic RBS Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758097">K3758097 </a><br> psbC 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758098">K3758098 </a><br> accD 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758099">K3758099 </a><br> clpP 5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758100">K3758100 </a><br> rbcL 5'UTR So </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758101">K3758101 </a><br> ndhC 5'UTR So </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758102">K3758102 </a><br> ndhB 5'UTR So </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758103">K3758103 </a><br> atpB 5'UTR So </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758104">K3758104 </a><br> psaC 5'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758105">K3758105 </a><br> psbA 5'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758106">K3758106 </a><br> psbB 5'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758107">K3758107 </a><br> rpl23 5'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758108">K3758108 </a><br> rpl32 5'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758109">K3758109 </a><br> rps12 5'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758110">K3758110 </a><br> rps19 5'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758111">K3758111 </a><br> Gene10 5'UTR T7 </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758113">K3758113 </a><br> rpl33 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758114">K3758114 </a><br> rps4 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758115">K3758115 </a><br> rps12 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758116">K3758116 </a><br> rps19 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758117">K3758117 </a><br> rbcL 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758118">K3758118 </a><br> psbA 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758119">K3758119 </a><br> atpB 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758120">K3758120 </a><br> psaC 5'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758121">K3758121 </a><br> atpB 5'UTR Qr </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758122">K3758122 </a><br> psaC 5'UTR Qr </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758123">K3758123 </a><br> psaC 5'UTR Qr </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758124">K3758124 </a><br> Synthetic 5'UTR 1 </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758125">K3758125 </a><br> Synthetic 5'UTR 2 </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758126">K3758126 </a><br> Synthetic 5'UTR 3 </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758127">K3758127 </a><br> Synthetic 5'UTR 4 </li> | ||
+ | |||
+ | |||
+ | |||
+ | </b> | ||
+ | </ul> | ||
+ | </html>]] | ||
+ | |||
+ | [[File:T--Marburg--Promoter+5'UTR_Symbol.png|120px|thumb|none| | ||
+ | |||
+ | <html> | ||
+ | <ul> | ||
+ | <b> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758140">K3758140 </a><br> PaccD+5'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758141">K3758141 </a><br> Prrn+RBS(3.9%) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758142">K3758142 </a><br> Prrn+RBS(46%) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758143">K3758143 </a><br> Prrn+RBS(60%) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758144">K3758144 </a><br> Prrn+RBS(61%) Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758145">K3758145 </a><br> Prrn+RBS(100%) Nt </li> | ||
+ | |||
+ | |||
+ | </b> | ||
+ | </ul> | ||
+ | </html>]] | ||
+ | |||
+ | |||
+ | [[File:T--Marburg--Coding_Sequence_Symbol.png|120px|thumb|none| | ||
+ | |||
+ | <html> | ||
+ | <ul> | ||
+ | <b> | ||
+ | |||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758170">K3758170 </a><br> mEmerald Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758171">K3758171 </a><br> pporRFP Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758172">K3758172 </a><br> aadA Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758173">K3758173 </a><br> FLARE-16S-aadA-GFP Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758174">K3758174 </a><br> NanoLuc Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758175">K3758175 </a><br> Firefly Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758176">K3758176 </a><br> mScarlet Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758177">K3758177 </a><br> sfGFP Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758178">K3758178 </a><br> NanoLuc Cr </li> | ||
+ | |||
+ | |||
+ | </ul> | ||
+ | </b> | ||
+ | </html>]] | ||
+ | |||
+ | [[File:T--Marburg--3'UTR_Symbol.png|120px|thumb|none| | ||
+ | |||
+ | <html> | ||
+ | <ul> | ||
+ | <b> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758200">K3758200 </a><br> psbA 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758201">K3758201 </a><br> rbcL 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758202">K3758202 </a><br> rpoA 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758203">K3758203 </a><br> petD 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758204">K3758204 </a><br> rps4 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758205">K3758205 </a><br> petN 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758206">K3758206 </a><br> petB 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758207">K3758207 </a><br> ndhB 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758208">K3758208 </a><br> atpE 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758209">K3758209 </a><br> accD 3'UTR Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758210">K3758210 </a><br> atpA 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758211">K3758211 </a><br> ndhJ 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758212">K3758212 </a><br> psaC 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758213">K3758213 </a><br> psaJ 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758214">K3758214 </a><br> psbC 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758215">K3758215 </a><br> psbK 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758216">K3758216 </a><br> rbcL 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758217">K3758217 </a><br> rpl20 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758218">K3758218 </a><br> rpl32 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758219">K3758219 </a><br> rps4 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758220">K3758220 </a><br> rps7 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758221">K3758221 </a><br> rps16 3'UTR Os </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758222">K3758222 </a><br> TMV 3'UTR </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758223">K3758223 </a><br> TYMV 3'UTR </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758224">K3758224 </a><br> BMV 3'UTR </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758225">K3758225 </a><br> rrnB 3'UTR Ec </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758226">K3758226 </a><br> atpA 3'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758227">K3758227 </a><br> atpF 3'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758228">K3758228 </a><br> ndhJ 3'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758229">K3758229 </a><br> psbC 3'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758230">K3758230 </a><br> psbI 3'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758231">K3758231 </a><br> psbJ 3'UTR Ta </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758232">K3758232 </a><br> rbcL 3'UTR Qr </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758233">K3758233 </a><br> rbcL 3'UTR (long) Cr </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758234">K3758234 </a><br> rbcL 3'UTR (short) Cr </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758235">K3758235 </a><br> psaC 3'UTR Nt </li> | ||
+ | |||
+ | </b> | ||
+ | </ul> | ||
+ | </html>]] | ||
+ | |||
+ | |||
+ | |||
+ | [[File:T--Marburg--3'Homology_Symbol.png|120px|thumb|none|<html> | ||
+ | <ul> <b> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758251">K3758251 </a><br> trnfM 3'Homology Nt </li> | ||
+ | <li> <a href="https://parts.igem.org/Part:BBa_K3758253">K3758253 </a><br> trnA 3'Homology Nt </li> | ||
+ | </ul> | ||
+ | </b> | ||
+ | </html>]] | ||
+ | |||
+ | </div> | ||
+ | |||
+ | ==References== | ||
+ | [1] Aboul-Maaty, N. A.-F., & Oraby, H. A.-S. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0066-1 | ||
+ | |||
+ | [2] Fuentes, P., Zhou, F., Erban, A., Karcher, D., Kopka, J., & Bock, R. (2016). A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. ELife, 5. https://doi.org/10.7554/elife.13664 | ||
+ | |||
+ | [3] Filée, J., & Forterre, P. (2005). Viral proteins functioning in organelles: a cryptic origin? Trends in Microbiology, 13(11), 510–513. https://doi.org/10.1016/j.tim.2005.08.012 | ||
+ | |||
+ | [4] Liere, K., & Börner, T. (2007). Transcription and transcriptional regulation in plastids. In Cell and Molecular Biology of Plastids (pp. 121–174). Springer Berlin Heidelberg. https://doi.org/10.1007/4735_2007_0232 | ||
+ | |||
+ | [5] Xie, G., & Allison, L. (2002). Sequences upstream of the YRTA core region are essential for transcription of the tobacco atpB NEP promoter in chloroplasts in vivo. Current Genetics, 41(3), 176–182. https://doi.org/10.1007/s00294-002-0293-z | ||
+ | |||
+ | [6] Kuroda, H., & Maliga, P. (2002). Overexpression of the clpP 5′-Untranslated Region in a Chimeric Context Causes a Mutant Phenotype, Suggesting Competition for a clpP-Specific RNA Maturation Factor in Tobacco Chloroplasts. Plant Physiology, 129(4), 1600–1606. https://doi.org/10.1104/pp.004986 | ||
+ | |||
+ | [7] Klinkert, B. (2006). Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Research, 34(1), 386–394. https://doi.org/10.1093/nar/gkj433 | ||
+ | |||
+ | [8] Zhelyazkova, P., Hammani, K., Rojas, M., Voelker, R., Vargas-Suárez, M., Börner, T., & Barkan, A. (2011). Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts. Nucleic Acids Research, 40(7), 3092–3105. https://doi.org/10.1093/nar/gkr1137 | ||
+ | |||
+ | [9] Zoschke, R., Kroeger, T., Belcher, S., Schöttler, M. A., Barkan, A., & Schmitz-Linneweber, C. (2012). The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplastatpB/EmRNA. The Plant Journal, 72(4), 547–558. https://doi.org/10.1111/j.1365-313x.2012.05081.x | ||
+ | |||
+ | [10] Zhang, L., Zhou, W., Che, L., Rochaix, J.-D., Lu, C., Li, W., & Peng, L. (2019). PPR Protein BFA2 Is Essential for the Accumulation of the atpH/F Transcript in Chloroplasts. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00446 | ||
+ | |||
+ | [11] Tangphatsornruang, S., Birch-Machin, I., Newell, C. A., & Gray, J. C. (2010). The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Molecular Biology, 76(3–5), 385–396. https://doi.org/10.1007/s11103-010-9689-1 | ||
+ | |||
+ | [12] Eberhard, S., Drapier, D., & Wollman, F.-A. (2002). Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. The Plant Journal, 31(2), 149–160. https://doi.org/10.1046/j.1365-313x.2002.01340.x | ||
+ | |||
+ | [13] Pfalz, J., Bayraktar, O. A., Prikryl, J., & Barkan, A. (2009). Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. The EMBO Journal, 28(14), 2042–2052. https://doi.org/10.1038/emboj.2009.121 | ||
+ | |||
+ | [14] Schaumberg, K. A., Antunes, M. S., Kassaw, T. K., Xu, W., Zalewski, C. S., Medford, J. I., & Prasad, A. (2015). Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nature Methods, 13(1), 94–100. https://doi.org/10.1038/nmeth.3659 | ||
+ | |||
+ | [15] Stukenberg, D., Hensel, T., Hoff, J., Daniel, B., Inckemann, R., Tedeschi, J. N., Nousch, F., & Fritz, G. (2021). The Marburg Collection: A Golden Gate DNA Assembly Framework for Synthetic Biology Applications in Vibrio natriegens. ACS Synthetic Biology, 10(8), 1904–1919. https://doi.org/10.1021/acssynbio.1c00126 | ||
+ | |||
+ | [16] Suzuki, J. Y., Sriraman, P., Svab, Z., & Maliga, P. (2003). Unique Architecture of the Plastid Ribosomal RNA Operon Promoter Recognized by the Multisubunit RNA Polymerase in Tobacco and Other Higher Plants. The Plant Cell, 15(1), 195–205. https://doi.org/10.1105/tpc.007914 | ||
− | [ | + | [17] Occhialini, A., Piatek, A. A., Pfotenhauer, A. C., Frazier, T. P., Stewart, C. N., Jr., & Lenaghan, S. C. (2019). MoChlo: A Versatile, Modular Cloning Toolbox for Chloroplast Biotechnology. Plant Physiology, 179(3), 943–957. https://doi.org/10.1104/pp.18.01220 |
Latest revision as of 11:46, 10 August 2023
Prrn16, rrn16 Promoter (-64 to +17) (N. tabacum)
Contents
Part Description
This part was created using the Phytobrick Entry Vector with GFP dropout BBa_K2560002 and was designed to be compatible with the Phytobrick assembly standard. This years BioBricks were either constructed via PCR from purified DNA samples using a CTAB based method [1], by primer annealing, primer annealing, and extension reactions or synthesized via IDT/Twist.
All parts this year were produced to be used in the chloroplast of different plant species. For the characterization of these parts they were tested in chloroplast cell-free systems (ccfs) from either the same species or they were tested in ccfs from other plant species. Plastid parts offer the benefit of highly conserved regulatory sequences that can be used across species. Although characterizing chloroplast parts is a huge effort, in literature, it has been shown that plastid parts can be used across species to drive gene expression [2]. We believe that based on this knowledge we can create valuable parts that can be screened for activity in our system with the final goal of building a variety of different parts. This collection shall help combat unwanted recombination events in vivo that sometimes impede the successful functionality of the genetic design.
The PEP Promoter
Transcription in the chloroplast is mainly driven by two different RNA Polymerases: plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP).
The PEP is a bacterial-like polymerase that is a remnant of the chloroplast’s cyanobacterial ancestor and is only capable of promoting gene expression in the plastid. These polymerases are able to interact with nuclear-encoded sigma factors and therefore are able to recognize bacterial promoter motives such as the -35 (TTGACA) and the Pribnow (TATAAT) box. Similar to bacteria there are different sigma factors promoting gene expression under different growth conditions. As the PEP is structurally more sophisticated there are even more peptides involved in DNA transcription that is not fully understood yet.
The NEP Promoter
The NEP is a T3/T7 phage-like polymerase that is encoded in the nucleus and is imported into the chloroplast. It was proposed that this polymerase is a remnant of a horizontal gene transfer from a bacterium to a eubacterial ancestor of today's plant cells [3] [4]. This type of polymerase mainly promotes gene expression in the early developmental stages of the chloroplast. In mature chloroplasts, it continues to transcribe housekeeping genes like the subunits of the plastid-encoded polymerase (rpoA, rpoB, rpoC1, and rpoC2) and proteins involved in fatty acid biosynthesis such as acetyl-CoA carboxylase (accD). In contrast, the PEP is rather active in mature chloroplasts and is primarily involved in the expression of photosynthetic genes. For other non-photosynthetic genes, motives of both polymerases can be found and it has been shown that both can promote transcription using deletion studies of important promoter sequences [5] [6].
Characterization & Measurement
Batch effect
A major difficulty when working with cell free technology is the reproducibility of reliable data generation. While one batch of cell free extract generation might be perfectly suited for efficient protein production, other batches might not perform that well. Because our chloroplast extracts were prepared from leaves, each preparation could have contained distinct compositions of differentiated leaf cells (for example: mesophyll, palisade parenchyma and bundle sheath) from plants that experienced microclimatic variations. This in turns causes the individual difference in expression strength, making it impossible to quantitatively compare data across measurements.
Dual Luciferase Normalization
To tackle the aforementioned issue, we designed our measurement construct to harbor two individual luciferase cassettes. A standardized cassette that includes the Firefly luciferase (FLuc) is included in every measurement construct in order to have a reference point to which we can normalize our gained data to[14] . The second cassette consists of a Nano Luciferase (NLuc) harboring a placeholder part in either the promoter, 5’UTR or 3’UTR position. This enables quick exchange of a series of lvl0 parts allowing for high throughput characterization of genetic parts.
Figure 1: SBOL Visualization of our Dual Luciferase lvl2 measurement vector
On the left you can see the inverted Firefly luciferase that is used for ratiometric normalization of our data.
The right cassette shows the NanoLuc luciferase, in which Dropout sequences have been included for rapid exchange of parts in either the promoter, 5'UTR or 3'UTR position
Placeholder
For the characterization of the parts produced this year, we made use of Golden Gate placeholder parts introduced by [http://2019.igem.org/Team:Marburg iGEM Marburg 2019]: BBa_K3228060, BBa_K3228061 and BBa_K3228063. These placeholder parts can be used in assemblies to subsequently replace it with another part of the same type in a secondary Golden Gate assembly. A placeholder can rationalize large-scale assemblies: Instead of building each plasmid from scratch, a placeholder is used to generate an entry vector.
Results
Marburg collection 3.0
We proudly present the third expansion of the Marburg collection [15]. The Marburg collection is a Golden Gate based toolbox containing various parts that are compatible with the PhytoBrick system and MoClo. Compared to other bacterial toolboxes, the Marburg Collection shines with superior flexibility. The collection overcame the rigid paradigm of plasmid construction - thinking in fixed backbone and insert categories - by achieving complete de novo assembly of plasmids.
36 connectors facilitate flexible cloning of multigene constructs and even allow for the inversion of individual transcription units.
The original [http://2018.igem.org/Team:Marburg/Part_Collection Marburg Collection] contains 123 parts in total, including:
inducible promoters, reporters, fluorescence and epitope tags, oris, resistance cassettes and genome engineering tools. The toolbox was constructed as a foundation for future iGEM teams to empower accelerated progression in their ambitious projects.
Our collection includes genetic parts suitable for use in the chloroplast. Among parts from the chloroplast of Nicotiana tabacum, we built parts from the chloroplast of Spinacia oleracea, Oryza sativa,Triticum aestivum and Quercus robur. With our contribution, we aim to accelerate research in the field of plastid engineering.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Overview Marburg collection 3.0
![](/wiki/images/e/ee/T--Marburg--Promoter_Symbol.png)
- K3758000
Prrn (-64 to +17) Nt - K3758001
Prrn (5fold decrease) Nt - K3758002
PpsbA Nt - K3758003
PpsbA (-42 to +9) Nt - K3758004
PpsbB Nt - K3758005
PpsbD-leader Nt - K3758006
PaccD (-84 to +23) Nt - K3758007
PaccD (functional) Nt - K3758008
PatpB (+NEP-PEP) Nt - K3758009
PatpB (only NEP) Nt - K3758010
PatpB (+NEP+PEP) Nt - K3758011
PatpB (only PEP) Nt - K3758012
PatpH Nt - K3758013
PatpI (PEP) Nt - K3758014
PclpP (NEP) Nt - K3758015
PclpP (PEP) Nt - K3758016
PrbcL Nt - K3758017
PrbcL (core -35 to +9) Nt - K3758018
PrpoB Nt - K3758019
Prrn1 (library) Nt - K3758020
Prrn2 (library) Nt - K3758021
Prrn3 (library) Nt - K3758022
Prrn5 (library) Nt - K3758023
Prrn6 (library) Nt - K3758024
Prrn7 (library) Nt - K3758025
Prrn8 (library) Nt - K3758026
Prrn9 (library) Nt - K3758027
Prrn10 (library) Nt - K3758028
Prrn12 (library) Nt - K3758029
Prrn13 (library) Nt - K3758030
Prrn14 (library) Nt - K3758031
Prrn15 (library) Nt - K3758032
Prrn16 (library) Nt - K3758033
Prrn17 (library) Nt - K3758034
Prrn18 (library) Nt - K3758035
Prrn19 (library) Nt - K3758036
Prrn20 (library) Nt - K3758037
Prrn21 (library) Nt - K3758038
PpsbD Os - K3758039
PpsbK Os - K3758040
PpsbA Os - K3758041
PrbcL Os - K3758042
Prrn16 (short) Nt - K3758043
Prrn16 (long) Nt - K3758044
Prrn16 Ta
![](/wiki/images/8/8b/T--Marburg--5%27UTR_Symbol.png)
- K3758070
atpB 5'UTR Nt - K3758071
atpB 5'UTR (+10) Nt - K3758072
atpB 5'UTR (-90 to +10 processed) Nt - K3758073
atpB 5'UTR (TCR processed -90) Nt - K3758074
atpH 5'UTR (-45 processed) 5'UTR Nt - K3758075
psbN 5'UTR Nt - K3758076
psbN 5'UTR (processed) Nt - K3758077
psbB 5'UTR Nt - K3758078
ndhD 5'UTR Nt - K3758079
rps2 mAAGA 5'UTR Nt - K3758080
rps2 mCCUC 5'UTR Nt - K3758081
rps2 mAAGA 5'UTR (Δ -20 to -10) Nt - K3758082
rps2 mCCUC 5'UTR (Δ -20 to -10) Nt - K3758083
psbH 5'UTR (Startcodon + 1AA) Nt - K3758084
psbA 5'UTR (SNM) Nt - K3758085
psbA 5'UTR (SEM) Nt - K3758086
psbA 5'UTR (ΔSL) Nt - K3758087
psbA 5'UTR (Δ5'SL) Nt - K3758088
psbA-rbcL 5'UTR (R'SLWT) Nt - K3758089
rps14 5'UTR Nt - K3758090
rbcL 5'UTR (full) Nt - K3758091
rbcL 5'UTR (processed) Nt - K3758092
rbcL 5'UTR (+14AA) Nt - K3758093
rrn16 5'UTR Nt - K3758094
rrn16 5'UTR (+37) Nt - K3758095
psbA 5'UTR Nt - K3758096
Synthetic RBS Nt - K3758097
psbC 5'UTR Nt - K3758098
accD 5'UTR Nt - K3758099
clpP 5'UTR Nt - K3758100
rbcL 5'UTR So - K3758101
ndhC 5'UTR So - K3758102
ndhB 5'UTR So - K3758103
atpB 5'UTR So - K3758104
psaC 5'UTR Os - K3758105
psbA 5'UTR Os - K3758106
psbB 5'UTR Os - K3758107
rpl23 5'UTR Os - K3758108
rpl32 5'UTR Os - K3758109
rps12 5'UTR Os - K3758110
rps19 5'UTR Os - K3758111
Gene10 5'UTR T7 - K3758113
rpl33 5'UTR Ta - K3758114
rps4 5'UTR Ta - K3758115
rps12 5'UTR Ta - K3758116
rps19 5'UTR Ta - K3758117
rbcL 5'UTR Ta - K3758118
psbA 5'UTR Ta - K3758119
atpB 5'UTR Ta - K3758120
psaC 5'UTR Ta - K3758121
atpB 5'UTR Qr - K3758122
psaC 5'UTR Qr - K3758123
psaC 5'UTR Qr - K3758124
Synthetic 5'UTR 1 - K3758125
Synthetic 5'UTR 2 - K3758126
Synthetic 5'UTR 3 - K3758127
Synthetic 5'UTR 4
![](/wiki/images/a/a8/T--Marburg--3%27UTR_Symbol.png)
- K3758200
psbA 3'UTR Nt - K3758201
rbcL 3'UTR Nt - K3758202
rpoA 3'UTR Nt - K3758203
petD 3'UTR Nt - K3758204
rps4 3'UTR Nt - K3758205
petN 3'UTR Nt - K3758206
petB 3'UTR Nt - K3758207
ndhB 3'UTR Nt - K3758208
atpE 3'UTR Nt - K3758209
accD 3'UTR Nt - K3758210
atpA 3'UTR Os - K3758211
ndhJ 3'UTR Os - K3758212
psaC 3'UTR Os - K3758213
psaJ 3'UTR Os - K3758214
psbC 3'UTR Os - K3758215
psbK 3'UTR Os - K3758216
rbcL 3'UTR Os - K3758217
rpl20 3'UTR Os - K3758218
rpl32 3'UTR Os - K3758219
rps4 3'UTR Os - K3758220
rps7 3'UTR Os - K3758221
rps16 3'UTR Os - K3758222
TMV 3'UTR - K3758223
TYMV 3'UTR - K3758224
BMV 3'UTR - K3758225
rrnB 3'UTR Ec - K3758226
atpA 3'UTR Ta - K3758227
atpF 3'UTR Ta - K3758228
ndhJ 3'UTR Ta - K3758229
psbC 3'UTR Ta - K3758230
psbI 3'UTR Ta - K3758231
psbJ 3'UTR Ta - K3758232
rbcL 3'UTR Qr - K3758233
rbcL 3'UTR (long) Cr - K3758234
rbcL 3'UTR (short) Cr - K3758235
psaC 3'UTR Nt
References
[1] Aboul-Maaty, N. A.-F., & Oraby, H. A.-S. (2019). Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0066-1
[2] Fuentes, P., Zhou, F., Erban, A., Karcher, D., Kopka, J., & Bock, R. (2016). A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. ELife, 5. https://doi.org/10.7554/elife.13664
[3] Filée, J., & Forterre, P. (2005). Viral proteins functioning in organelles: a cryptic origin? Trends in Microbiology, 13(11), 510–513. https://doi.org/10.1016/j.tim.2005.08.012
[4] Liere, K., & Börner, T. (2007). Transcription and transcriptional regulation in plastids. In Cell and Molecular Biology of Plastids (pp. 121–174). Springer Berlin Heidelberg. https://doi.org/10.1007/4735_2007_0232
[5] Xie, G., & Allison, L. (2002). Sequences upstream of the YRTA core region are essential for transcription of the tobacco atpB NEP promoter in chloroplasts in vivo. Current Genetics, 41(3), 176–182. https://doi.org/10.1007/s00294-002-0293-z
[6] Kuroda, H., & Maliga, P. (2002). Overexpression of the clpP 5′-Untranslated Region in a Chimeric Context Causes a Mutant Phenotype, Suggesting Competition for a clpP-Specific RNA Maturation Factor in Tobacco Chloroplasts. Plant Physiology, 129(4), 1600–1606. https://doi.org/10.1104/pp.004986
[7] Klinkert, B. (2006). Translation of chloroplast psbD mRNA in Chlamydomonas is controlled by a secondary RNA structure blocking the AUG start codon. Nucleic Acids Research, 34(1), 386–394. https://doi.org/10.1093/nar/gkj433
[8] Zhelyazkova, P., Hammani, K., Rojas, M., Voelker, R., Vargas-Suárez, M., Börner, T., & Barkan, A. (2011). Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts. Nucleic Acids Research, 40(7), 3092–3105. https://doi.org/10.1093/nar/gkr1137
[9] Zoschke, R., Kroeger, T., Belcher, S., Schöttler, M. A., Barkan, A., & Schmitz-Linneweber, C. (2012). The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplastatpB/EmRNA. The Plant Journal, 72(4), 547–558. https://doi.org/10.1111/j.1365-313x.2012.05081.x
[10] Zhang, L., Zhou, W., Che, L., Rochaix, J.-D., Lu, C., Li, W., & Peng, L. (2019). PPR Protein BFA2 Is Essential for the Accumulation of the atpH/F Transcript in Chloroplasts. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00446
[11] Tangphatsornruang, S., Birch-Machin, I., Newell, C. A., & Gray, J. C. (2010). The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Molecular Biology, 76(3–5), 385–396. https://doi.org/10.1007/s11103-010-9689-1
[12] Eberhard, S., Drapier, D., & Wollman, F.-A. (2002). Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. The Plant Journal, 31(2), 149–160. https://doi.org/10.1046/j.1365-313x.2002.01340.x
[13] Pfalz, J., Bayraktar, O. A., Prikryl, J., & Barkan, A. (2009). Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. The EMBO Journal, 28(14), 2042–2052. https://doi.org/10.1038/emboj.2009.121
[14] Schaumberg, K. A., Antunes, M. S., Kassaw, T. K., Xu, W., Zalewski, C. S., Medford, J. I., & Prasad, A. (2015). Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nature Methods, 13(1), 94–100. https://doi.org/10.1038/nmeth.3659
[15] Stukenberg, D., Hensel, T., Hoff, J., Daniel, B., Inckemann, R., Tedeschi, J. N., Nousch, F., & Fritz, G. (2021). The Marburg Collection: A Golden Gate DNA Assembly Framework for Synthetic Biology Applications in Vibrio natriegens. ACS Synthetic Biology, 10(8), 1904–1919. https://doi.org/10.1021/acssynbio.1c00126
[16] Suzuki, J. Y., Sriraman, P., Svab, Z., & Maliga, P. (2003). Unique Architecture of the Plastid Ribosomal RNA Operon Promoter Recognized by the Multisubunit RNA Polymerase in Tobacco and Other Higher Plants. The Plant Cell, 15(1), 195–205. https://doi.org/10.1105/tpc.007914
[17] Occhialini, A., Piatek, A. A., Pfotenhauer, A. C., Frazier, T. P., Stewart, C. N., Jr., & Lenaghan, S. C. (2019). MoChlo: A Versatile, Modular Cloning Toolbox for Chloroplast Biotechnology. Plant Physiology, 179(3), 943–957. https://doi.org/10.1104/pp.18.01220