Difference between revisions of "Part:BBa K3520006"
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
+ | |||
<partinfo>BBa_K3520006 short</partinfo> | <partinfo>BBa_K3520006 short</partinfo> | ||
+ | <br><br> | ||
− | + | <partinfo>BBa_K3520006 SequenceAndFeatures</partinfo> | |
+ | <br><br> | ||
− | + | This part codes for the CcpAx protein, an assisting protein in cellulose biosynthesis in Bacteria. It is codon optimised for <i>Flavobacterium johnsoniae</i> UW101 | |
− | + | ||
− | < | + | <br/><br/> |
− | < | + | |
− | < | + | =Description= |
+ | <br> | ||
+ | ccpAx encodes for a cellulose complementing factor. The function of this protein is not yet understood. | ||
+ | |||
+ | <br><br> | ||
+ | |||
+ | ==The Bacterial Bcs Operon== | ||
+ | <br> | ||
+ | The putative operon consists of four genes, bcsA, bcsB, bcsC and bcsD. It encodes membrane-associated proteins can catalyse extracellular Bacterial Cellulose synthesis in vivo. Once the bcsABCD operon expression is triggered, BcsA and BcsB proteins form the BcsAB complex, which binds its substrate, UDP-glucose, at an intracellular glycosyltransferase (GT) domain. This complec is the active core of the cellulose synthase. This is followed by the secretion of BC fibres through pores and passageways formed by BcsC and BcsD proteins. Co expression with Cmcax and CcpAx have shown increased production. The cellulose synthase, BcsC, BcsD, Cmcax, and CcpAx are the biocatalysts of UDP-glucose transformation to cellulose. Two main applications of cellulose in biosciences are scaffolds for tissue engineering and generally in biomedicine. | ||
+ | <br><br> | ||
+ | |||
+ | =Athens 2020= | ||
+ | <br> | ||
+ | |||
+ | The current part is designed by iGEM Athens 2020 team during the project MORPHÆ. In this project, Flavobacteria were used to produce a non-cellular structurally coloured biomaterial which would require the secretion of a biomolecule that Flavobacteria do not normally secrete. Our hypothesis is that the formed matrix will have a structure similar to that of the biofilm and thus, it will provide the material with macroscopically the same colouration properties as the biofilm. | ||
+ | |||
+ | |||
+ | =SOURCE OF THIS PART= | ||
+ | <br> | ||
+ | |||
+ | The nucleotide sequences of the bacterial cellulose operon come from the strain <i>Komagataeibacter xylinus</i> and GenBank database (Acc.No.X54676.1). <i>K.xylinus</i> is a member of the acetic acid bacteria, a group of Gram-negative aerobic bacteria that produce acetic acid during fermentation. | ||
+ | <br><br> | ||
+ | |||
+ | =Useful Links:= | ||
+ | <br> | ||
+ | |||
+ | NCBI taxonomy:<br /><br /> | ||
+ | https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=28448&lvl=3&lin=f&keep=1&srchmode=1&unlock<br /><br /> | ||
+ | GenBank link:<br /><br /> | ||
+ | https://www.ncbi.nlm.nih.gov/nuccore/X54676.1<br /><br /> | ||
+ | Codon optimisation bank:<br /><br /> | ||
+ | http://genomes.urv.es/OPTIMIZER/?fbclid=IwAR0ALbP_C8UVY4itvYdNX8b5KYYUM5ulQojz8UJAK6Zj5llobNNxE-jYmXQ<br /><br /> | ||
+ | Codon optimization table:<br /><br /> | ||
+ | https://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=376686&fbclid=IwAR0gwwrIarZsiYhWvHPc2BKy-iB_2OM-DPB5I2HYJZwBNiasmlLXWK87PwM<br /><br /> | ||
+ | <br><br> | ||
+ | |||
+ | =REFERENCES= | ||
+ | <br> | ||
+ | |||
+ | Braun, T., Khubbar, M., Saffarini, D., & McBride, M. (2005). Flavobacterium johnsoniae Gliding Motility Genes Identified by mariner Mutagenesis. Journal Of Bacteriology, 187(20), 6943-6952. doi: 10.1128/jb.187.20.6943-6952.2005 | ||
+ | |||
+ | Buldum, G., Bismarck, A., & Mantalaris, A. (2017). Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess And Biosystems Engineering, 41(2), 265-279. doi: 10.1007/s00449-017-1864-1 | ||
+ | |||
+ | Johansen, V., Catón, L., Hamidjaja, R., Oosterink, E., Wilts, B., & Rasmussen, T. et al. (2018). Genetic manipulation of structural color in bacterial colonies. Proceedings Of The National Academy Of Sciences, 115(11), 2652-2657. doi: 10.1073/pnas.1716214115 | ||
+ | |||
+ | McBride, M., & Kempf, M. (1996). Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. Journal Of Bacteriology, 178(3), 583-590. doi: 10.1128/jb.178.3.583-590.1996 | ||
+ | |||
+ | Nakamura, Y. (2000). Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Research, 28(1), 292-292. doi: 10.1093/nar/28.1.292 | ||
+ | |||
+ | Omadjela, O., Narahari, A., Strumillo, J., Melida, H., Mazur, O., Bulone, V., & Zimmer, J. (2013). BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proceedings Of The National Academy Of Sciences, 110(44), 17856-17861. doi: 10.1073/pnas.1314063110 | ||
+ | Römling, U., & Galperin, M. (2015). Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends In Microbiology, 23(9), 545-557. doi: 10.1016/j.tim.2015.05.005 | ||
− | + | Naoki Sunagawa, Takaaki Fujiwara, Takanori Yoda, Shin Kawano, Yasuharu Satoh, Min Yao, Kenji Tajima, and Tohru Dairi1, Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum, Journal of Bioscience and Bioengineering VOL. 115 No. 6, 607e612, 2013 | |
− | + | ||
− | + | ||
− | + |
Latest revision as of 00:56, 28 October 2020
ccpAx-gene for Bacterial Cellulose upregulation
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
This part codes for the CcpAx protein, an assisting protein in cellulose biosynthesis in Bacteria. It is codon optimised for Flavobacterium johnsoniae UW101
Description
ccpAx encodes for a cellulose complementing factor. The function of this protein is not yet understood.
The Bacterial Bcs Operon
The putative operon consists of four genes, bcsA, bcsB, bcsC and bcsD. It encodes membrane-associated proteins can catalyse extracellular Bacterial Cellulose synthesis in vivo. Once the bcsABCD operon expression is triggered, BcsA and BcsB proteins form the BcsAB complex, which binds its substrate, UDP-glucose, at an intracellular glycosyltransferase (GT) domain. This complec is the active core of the cellulose synthase. This is followed by the secretion of BC fibres through pores and passageways formed by BcsC and BcsD proteins. Co expression with Cmcax and CcpAx have shown increased production. The cellulose synthase, BcsC, BcsD, Cmcax, and CcpAx are the biocatalysts of UDP-glucose transformation to cellulose. Two main applications of cellulose in biosciences are scaffolds for tissue engineering and generally in biomedicine.
Athens 2020
The current part is designed by iGEM Athens 2020 team during the project MORPHÆ. In this project, Flavobacteria were used to produce a non-cellular structurally coloured biomaterial which would require the secretion of a biomolecule that Flavobacteria do not normally secrete. Our hypothesis is that the formed matrix will have a structure similar to that of the biofilm and thus, it will provide the material with macroscopically the same colouration properties as the biofilm.
SOURCE OF THIS PART
The nucleotide sequences of the bacterial cellulose operon come from the strain Komagataeibacter xylinus and GenBank database (Acc.No.X54676.1). K.xylinus is a member of the acetic acid bacteria, a group of Gram-negative aerobic bacteria that produce acetic acid during fermentation.
Useful Links:
NCBI taxonomy:
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=28448&lvl=3&lin=f&keep=1&srchmode=1&unlock
GenBank link:
https://www.ncbi.nlm.nih.gov/nuccore/X54676.1
Codon optimisation bank:
http://genomes.urv.es/OPTIMIZER/?fbclid=IwAR0ALbP_C8UVY4itvYdNX8b5KYYUM5ulQojz8UJAK6Zj5llobNNxE-jYmXQ
Codon optimization table:
https://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=376686&fbclid=IwAR0gwwrIarZsiYhWvHPc2BKy-iB_2OM-DPB5I2HYJZwBNiasmlLXWK87PwM
REFERENCES
Braun, T., Khubbar, M., Saffarini, D., & McBride, M. (2005). Flavobacterium johnsoniae Gliding Motility Genes Identified by mariner Mutagenesis. Journal Of Bacteriology, 187(20), 6943-6952. doi: 10.1128/jb.187.20.6943-6952.2005
Buldum, G., Bismarck, A., & Mantalaris, A. (2017). Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess And Biosystems Engineering, 41(2), 265-279. doi: 10.1007/s00449-017-1864-1
Johansen, V., Catón, L., Hamidjaja, R., Oosterink, E., Wilts, B., & Rasmussen, T. et al. (2018). Genetic manipulation of structural color in bacterial colonies. Proceedings Of The National Academy Of Sciences, 115(11), 2652-2657. doi: 10.1073/pnas.1716214115
McBride, M., & Kempf, M. (1996). Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. Journal Of Bacteriology, 178(3), 583-590. doi: 10.1128/jb.178.3.583-590.1996
Nakamura, Y. (2000). Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Research, 28(1), 292-292. doi: 10.1093/nar/28.1.292
Omadjela, O., Narahari, A., Strumillo, J., Melida, H., Mazur, O., Bulone, V., & Zimmer, J. (2013). BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proceedings Of The National Academy Of Sciences, 110(44), 17856-17861. doi: 10.1073/pnas.1314063110
Römling, U., & Galperin, M. (2015). Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends In Microbiology, 23(9), 545-557. doi: 10.1016/j.tim.2015.05.005
Naoki Sunagawa, Takaaki Fujiwara, Takanori Yoda, Shin Kawano, Yasuharu Satoh, Min Yao, Kenji Tajima, and Tohru Dairi1, Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum, Journal of Bioscience and Bioengineering VOL. 115 No. 6, 607e612, 2013