Difference between revisions of "Part:BBa K3328021:Design"

(Design Notes)
 
(One intermediate revision by one other user not shown)
Line 7: Line 7:
  
 
===Design Notes===
 
===Design Notes===
We combined the 3WJ switch and toehold switch to realize the IMPLY Boolean calculation. When no trigger expressed, this logic gate just likes a 3WJ switch. When trigger A expressed, the trigger will bind to the switch RNA. The binding allows for a branch migration process, exposing AUG and RBS for translation initiation. When trigger B expressed, the trigger will bind to 3WJ switch RNA. The resulting trigger–switch complex has a stable 3WJ structure that effectively sequesters the RBS and start codon within the loop and stem of the switch RNA, respectively, and strongly represses translation. When trigger A and B both expressed, the binding of trigger RNA to the toehold sequence allow the RNA polymerase binds to the former RBS and break open 3WJ stable hairpin.
+
AND gate constructed from two input RNAs that bind to yield a complete trigger RNA. When either input RNA is expressed, it is incapable of activating the switch because neither trigger sub-sequence alone can unwind the repressing hairpin. The toehold switch can only be turned on when the two input RNA species hybridize and form a complete trigger sequence.
 +
 
 +
https://2020.igem.org/wiki/images/thumb/1/1b/T--OUC-China--design_lunbo_and.jpg/799px-T--OUC-China--design_lunbo_and.jpg
  
 
===Source===
 
===Source===

Latest revision as of 12:49, 22 October 2020


switch of AND gate


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 753


Design Notes

AND gate constructed from two input RNAs that bind to yield a complete trigger RNA. When either input RNA is expressed, it is incapable of activating the switch because neither trigger sub-sequence alone can unwind the repressing hairpin. The toehold switch can only be turned on when the two input RNA species hybridize and form a complete trigger sequence.

799px-T--OUC-China--design_lunbo_and.jpg

Source

synthesize from company


References

Green, A., Kim, J., Ma, D. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017). https://doi.org/10.1038/nature23271