Difference between revisions of "Part:BBa K3633003"
(2 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
<partinfo>BBa_K3633003 short</partinfo> | <partinfo>BBa_K3633003 short</partinfo> | ||
− | + | ==Description== | |
− | + | [[File:T--Shanghai_SFLS_SPBS--Dopamine Synthesis--Pathway.png|600px|center|thumb|Fig 1. Dopamine Synthesis Pathway]] | |
− | + | ||
− | + | Dopamine is a hormone and neurotransmitter that plays a variety of important roles in the brain and body. It is an organic chemical substance in the catecholamine and phenethylamine family synthesized in plants and most animals. The synthesis of dopamine is accomplished by removing the carboxyl group from its chemical precursor L-DOPA molecule. L-DOPA, also known as levodopa and l-3,4-dihydroxyphenylalanine, is an amino acid produced and used in part of the normal biological process of humans and some animals and plants. | |
− | <span class='h3bb'> | + | |
+ | By merging DDC with J23102 promoter, RBS, HpaB, and HpaC, the biobrick is successfully expressed in BL21(DE3) and Vibrio natriegens in the experiment of iGEM20_Shanghai_SFLS_SPBS, and dopamine is successfully produced in E. coli in the presence of L-tyrosine. | ||
+ | |||
+ | |||
+ | ==Experiments & Results== | ||
+ | ===Successful production in E.coli BL21(DE3) and vibrio natriegens=== | ||
+ | We successfully constructed the HpaBC-DDC plasmid and transformed it into E. coli BL21(DE3) and Vibrio natriegens. Expression of the enzymes HpaB, HpaC, and DDC was confirmed by SDS-PAGE protein electrophoresis. However, the dopamine produced was often oxidized to polydopamine. We tried to produce dopamine in different conditions, including at different temperatures and different oxygen levels, but all of them failed. We learned that dopamine could polymerize in acidic, basic, as well as high-oxygen conditions. | ||
+ | |||
+ | [[File:T--Shanghai_SFLS_SPBS--Dopamine Result 1.png|600px|center|thumb|Fig 2. Production of dopamine in E. coli BL21(DE3) and Vibrio natriegens at 25℃ and 37℃ in 72 h. Top left: E. coli BL21(DE3), 25℃. Top right: E. coli BL21(DE3), 37℃. Bottom left: Vibrio natriegens, 25℃. Bottom right: Vibrio natriegens, 37℃.]] | ||
+ | ==Sequence & Features== | ||
+ | <span class='h3bb'></span> | ||
<partinfo>BBa_K3633003 SequenceAndFeatures</partinfo> | <partinfo>BBa_K3633003 SequenceAndFeatures</partinfo> | ||
Line 17: | Line 26: | ||
<partinfo>BBa_K3633003 parameters</partinfo> | <partinfo>BBa_K3633003 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | |||
+ | ==References== | ||
+ | 1. A. Das, A. Verma and K. Mukherjee, "Synthesis of dopamine in E. coli using plasmid-based expression system and its marked effect on host growth profiles", Preparative Biochemistry and Biotechnology, vol. 47, no. 8, pp. 754-760, 2017. Available: 10.1080/10826068.2017.1320291. | ||
+ | |||
+ | 2.Du, X., Li, L., Li, J., Yang, C., Frenkel, N., & Welle, A. et al. (2014). UV-Triggered Dopamine Polymerization: Control of Polymerization, Surface Coating, and Photopatterning. Advanced Materials, 26(47), 8029-8033. doi: 10.1002/adma.201403709 | ||
+ | |||
+ | 3.Du, X., Li, L., Behboodi-Sadabad, F., Welle, A., Li, J., & Heissler, S. et al. (2017). Bio-inspired strategy for controlled dopamine polymerization in basic solutions. Polymer Chemistry, 8(14), 2145-2151. doi: 10.1039/c7py00051k | ||
+ | |||
+ | 4.Chen, T., Liu, T., Su, T., & Liang, J. (2017). Self-Polymerization of Dopamine in Acidic Environments without Oxygen. Langmuir, 33(23), 5863-5871. doi: 10.1021/acs.langmuir.7b01127 |
Latest revision as of 01:57, 27 October 2020
coding sequence of DDC enzyme from pig kidney cell
Description
Dopamine is a hormone and neurotransmitter that plays a variety of important roles in the brain and body. It is an organic chemical substance in the catecholamine and phenethylamine family synthesized in plants and most animals. The synthesis of dopamine is accomplished by removing the carboxyl group from its chemical precursor L-DOPA molecule. L-DOPA, also known as levodopa and l-3,4-dihydroxyphenylalanine, is an amino acid produced and used in part of the normal biological process of humans and some animals and plants.
By merging DDC with J23102 promoter, RBS, HpaB, and HpaC, the biobrick is successfully expressed in BL21(DE3) and Vibrio natriegens in the experiment of iGEM20_Shanghai_SFLS_SPBS, and dopamine is successfully produced in E. coli in the presence of L-tyrosine.
Experiments & Results
Successful production in E.coli BL21(DE3) and vibrio natriegens
We successfully constructed the HpaBC-DDC plasmid and transformed it into E. coli BL21(DE3) and Vibrio natriegens. Expression of the enzymes HpaB, HpaC, and DDC was confirmed by SDS-PAGE protein electrophoresis. However, the dopamine produced was often oxidized to polydopamine. We tried to produce dopamine in different conditions, including at different temperatures and different oxygen levels, but all of them failed. We learned that dopamine could polymerize in acidic, basic, as well as high-oxygen conditions.
Sequence & Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
1. A. Das, A. Verma and K. Mukherjee, "Synthesis of dopamine in E. coli using plasmid-based expression system and its marked effect on host growth profiles", Preparative Biochemistry and Biotechnology, vol. 47, no. 8, pp. 754-760, 2017. Available: 10.1080/10826068.2017.1320291.
2.Du, X., Li, L., Li, J., Yang, C., Frenkel, N., & Welle, A. et al. (2014). UV-Triggered Dopamine Polymerization: Control of Polymerization, Surface Coating, and Photopatterning. Advanced Materials, 26(47), 8029-8033. doi: 10.1002/adma.201403709
3.Du, X., Li, L., Behboodi-Sadabad, F., Welle, A., Li, J., & Heissler, S. et al. (2017). Bio-inspired strategy for controlled dopamine polymerization in basic solutions. Polymer Chemistry, 8(14), 2145-2151. doi: 10.1039/c7py00051k
4.Chen, T., Liu, T., Su, T., & Liang, J. (2017). Self-Polymerization of Dopamine in Acidic Environments without Oxygen. Langmuir, 33(23), 5863-5871. doi: 10.1021/acs.langmuir.7b01127