Difference between revisions of "Part:BBa K3504004"
Ahmed Wael (Talk | contribs) (→Part Description) |
AhmedAdel01 (Talk | contribs) |
||
(11 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K3504004 short</partinfo> | <partinfo>BBa_K3504004 short</partinfo> | ||
− | + | <p style="color:red">NOTICE: Parts in our range for this season have been created as a part of our Phase I design of our project. These parts HAVE NOT been tested or characterized in the lab due to COVID-19-related precautionary measures. We have enriched our new parts pages with data from literature and results from our modeling and simulations. If you are intending on using this part or others in our range, please keep in mind these limitations and update these parts with data from your experimentation. Feel free to reach us at: igem.afcm@gmail.com for further inquiries.</p><br/> | |
==Part Description== | ==Part Description== | ||
Alpha-virus replicon Subgenomic constitutive promoter. And a subgenomic promoter is a promoter added to a virus for a specific heterologous gene resulting in the formation of mRNA for that gene alone. | Alpha-virus replicon Subgenomic constitutive promoter. And a subgenomic promoter is a promoter added to a virus for a specific heterologous gene resulting in the formation of mRNA for that gene alone. | ||
− | ==Usage and | + | ==Usage== |
+ | SG RNA is transcribed from the SG promoter and serves as template for translation of viral structure protein e.g.:capsid,E2 and E1 which gives alpha virus attractive systems for designing self replicating vectors for delivery and expression of heterogeneous genetic information. It’s also used for amplification and replication by the VEEV replication complex | ||
+ | SG RNA is transcribed from a promoter located in the alpha virus specific RNA replication intermediate and is not further amplified. SG promoter transcribes RNA encoding proteins of interest and encodes the same (3 CSE ) and poly A tail as the viral genome but contains a different (5 UTR) and lacks the (51-nt CSE). We used it as a control to demonstrates a standard level of RNA synthesis and heterogeneous protein expression. | ||
+ | |||
+ | ==Characterization== | ||
+ | We have made simulations using mathematical modelling techniques which showed expression values relative to those present in literature as shown in figures 1 & 2. These findings suggest that SGP 30 & 15 show the highest expression values with SGP 15 being the highest | ||
+ | [[Image:SGP Char.png|thumb|left|Figure 1.This figure shows mathmatical modelling simulations illustrations expression variation between SGP30 vs SGP15 which both show high expression however SGP 15 show much higher expression .]] | ||
+ | |||
+ | [[Image:SGP_lit_Char.PNG|thumb|right|Figure 2. shows mvenus expression in different variants of subgenomic promoters.(1)]] | ||
+ | |||
+ | |||
+ | <br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /> | ||
+ | ==References== | ||
+ | 1-Wagner, T. E., Becraft, J. R., Bodner, K., Teague, B., Zhang, X., Woo, A., ... & Sanders, N. N. (2018). Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nature chemical biology, 14(11), 1043-1050. | ||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> |
Latest revision as of 19:26, 26 October 2020
ِِAlphavirus Subgenomic Promoter 30
NOTICE: Parts in our range for this season have been created as a part of our Phase I design of our project. These parts HAVE NOT been tested or characterized in the lab due to COVID-19-related precautionary measures. We have enriched our new parts pages with data from literature and results from our modeling and simulations. If you are intending on using this part or others in our range, please keep in mind these limitations and update these parts with data from your experimentation. Feel free to reach us at: igem.afcm@gmail.com for further inquiries.
Part Description
Alpha-virus replicon Subgenomic constitutive promoter. And a subgenomic promoter is a promoter added to a virus for a specific heterologous gene resulting in the formation of mRNA for that gene alone.
Usage
SG RNA is transcribed from the SG promoter and serves as template for translation of viral structure protein e.g.:capsid,E2 and E1 which gives alpha virus attractive systems for designing self replicating vectors for delivery and expression of heterogeneous genetic information. It’s also used for amplification and replication by the VEEV replication complex SG RNA is transcribed from a promoter located in the alpha virus specific RNA replication intermediate and is not further amplified. SG promoter transcribes RNA encoding proteins of interest and encodes the same (3 CSE ) and poly A tail as the viral genome but contains a different (5 UTR) and lacks the (51-nt CSE). We used it as a control to demonstrates a standard level of RNA synthesis and heterogeneous protein expression.
Characterization
We have made simulations using mathematical modelling techniques which showed expression values relative to those present in literature as shown in figures 1 & 2. These findings suggest that SGP 30 & 15 show the highest expression values with SGP 15 being the highest
References
1-Wagner, T. E., Becraft, J. R., Bodner, K., Teague, B., Zhang, X., Woo, A., ... & Sanders, N. N. (2018). Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nature chemical biology, 14(11), 1043-1050. Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]