Difference between revisions of "Part:BBa K2992007"
(→Characterisation) |
JacobGausden (Talk | contribs) (→Characterisation) |
||
(One intermediate revision by one other user not shown) | |||
Line 10: | Line 10: | ||
===Characterisation=== | ===Characterisation=== | ||
− | This basic part was used to assemble our acetone producing composite parts and characterised using reporters:[https://parts.igem.org/Part:BBa_K2992028 BBa_K2992028], [https://parts.igem.org/Part:BBa_K2992029 BBa_K2992029], [https://parts.igem.org/Part:BBa_K2992030 BBa_K2992030], [https://parts.igem.org/Part:BBa_K2992034 BBa_K2992034], [https://parts.igem.org/Part:BBa_K2992035 BBa_K2992035], [https://parts.igem.org/Part:BBa_K2992036 BBa_K2992036] | + | This basic part was used to assemble our acetone producing composite parts and characterised using reporters:[https://parts.igem.org/Part:BBa_K2992028 BBa_K2992028], [https://parts.igem.org/Part:BBa_K2992029 BBa_K2992029], [https://parts.igem.org/Part:BBa_K2992030 BBa_K2992030], [https://parts.igem.org/Part:BBa_K2992034 BBa_K2992034], [https://parts.igem.org/Part:BBa_K2992035 BBa_K2992035], [https://parts.igem.org/Part:BBa_K2992036 BBa_K2992036]. <br> <br> |
Line 31: | Line 31: | ||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
− | <partinfo> | + | <partinfo>BBa_K2992007 SequenceAndFeatures</partinfo> |
===References=== | ===References=== |
Latest revision as of 00:39, 22 October 2019
intergenic region between ctfA and ctfB from C. botulinum
The A and B sub-units of the CtfAB complex are encoded in an operon on the genome of C. botulinum. This part entry represents the intergenic region immediately downstream of the stop codon for ctfA and upstream of the start codon for ctfB. This region also contains part of the RBS for ctfB.
Usage and Biology
The CtfAB complex is central to the production of biotechnologically relevant solvents in C. acetobutylicum such as acetone and butanol. The complex catalyses the conversion of acetoacetyl-CoA to acetoacetate concomitant with the transfer of CoA to acetate and butyrate. the CtfAB complex is a core component of our acetone production pathway to validate the use of volatile reporters to predict botulinum toxin production following food manufacturing processes. We have tested both C. acetobutylicum and C. botulinum-derived ctfAB.
Characterisation
This basic part was used to assemble our acetone producing composite parts and characterised using reporters:BBa_K2992028, BBa_K2992029, BBa_K2992030, BBa_K2992034, BBa_K2992035, BBa_K2992036.
To test our acetone production pathways, we transformed pMTL82151 plasmids encoding our acetone pathways using C. botulinum ctfAB BBa_K2992029 or C. acetobutylicum ctfAB BBa_K2992036, both under the control of PntnH, into our PbotR-botR reporter strain of C. sporogenes.
The data clearly indicates that ctfAB from C. acetobutylicum was much better suited to providing acetone production capacity to our C. sporogenes reporter strains. As a consequence, we selected the acetone production pathway cb_PntnH-5-UTR+RBS-ca_thl-ca_ctfAB-cp_TFdx BBa_K2992036 to assess acetone production in all of our promoter-botR genome integrant strains. The construct was cloned into pMTL82151 and transformed into our various promoter-botR strains and controls.
The data demonstrated appreciable acetone production of >2nM concentration when using either the native PbotR promoter and associated 5’-UTR+RBS or the RBS only construct to permit polar transcription from PpyrKDE. Considerable acetone production (4-6nM) was observed when using the constitutive clostridial promoter Pfdx. Crucially, acetone production was comparably scant when botR was absent from the genome of C. sporogenes and when no promoter was used to drive expression of the acetone production operon. These data provide experimental validation for the production of acetone in C. sporogenes as a model for Botulinum toxin prediction in foodstuffs.
More information can be found on our Results Page.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
Vital, M., Howe, A. and Tiedje, J. (2014). Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)genomic Data. mBio, 5(2).