Difference between revisions of "Part:BBa K3038002:Design"
(→Design Notes) |
|||
(5 intermediate revisions by 2 users not shown) | |||
Line 7: | Line 7: | ||
===Design Notes=== | ===Design Notes=== | ||
− | RFC10 | + | RFC10 standard |
+ | In order to produce the molecule of interest 2-nonanone, we worked with the Lawrence Berkeley National Laboratory, USA which is working on biofuels and modified <i>E. coli</i> strain and obtain a production of 2-nonanone. This production is possible using free fatty acids as substrate. | ||
+ | Here we present the cloning of thioesterase I (TesA), an enzyme involved in the synthesis of free fatty acids in <i>E. coli</i>. | ||
+ | |||
+ | Thanks to Geneious software we have designed a gene with a promoter, and a tag. This part doesn’t have a terminator because its produced to create a composite part with other gene involved in 2-nonanone synthesis. The promoter will therefore be associated with the design of the last gene of the composite part (Mlut_11700: BBa_K3038004). The promoter is inducible to arabinose. This allows a controlled expression of the synthetic gene to avoid any effect of toxicity. In addition, arabinose is an inexpensive inducer and very present in the laboratories of our university. | ||
+ | This part is already exciting with number BBa_K1472601. But we decided to improve it by adding a 6-his tag. This allows to purify and detect the protein in the host strain by using Ni-NTA columns. | ||
+ | |||
+ | <center>https://static.igem.org/mediawiki/parts/d/de/T--Poitiers--TesA_design-tab3.jpg<br> | ||
+ | |||
+ | <strong>Design of the ADR-C-term gene with the Geneious Software.</strong><br> | ||
+ | The design show restriction enzymes like EcoRI, XbaI, SpeI and PstI. The gene includes pBAD promoter and its terminater. Finally 6-His tag are present in C-term.<br></center> | ||
===Source=== | ===Source=== | ||
− | DNA synthesis RFC10 Standard | + | DNA synthesis |
+ | |||
+ | RFC10 Standard | ||
+ | |||
+ | GC content optimized | ||
===References=== | ===References=== | ||
+ | Engineering of Bacterial Methyl Ketone Synthesis for Biofuels. Ee-Been Goh,a,c Edward E. K. Baidoo,a,c Jay D. Keasling,a,c,d and Harry R. Beller. Appl Environ Microbiol. 2012 Jan; 78(1): 70–80. doi: 10.1128/AEM.06785-11. PMCID: PMC3255637. PMID: 22038610 |
Latest revision as of 15:04, 21 October 2019
Thioestherase
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
RFC10 standard
In order to produce the molecule of interest 2-nonanone, we worked with the Lawrence Berkeley National Laboratory, USA which is working on biofuels and modified E. coli strain and obtain a production of 2-nonanone. This production is possible using free fatty acids as substrate.
Here we present the cloning of thioesterase I (TesA), an enzyme involved in the synthesis of free fatty acids in E. coli.
Thanks to Geneious software we have designed a gene with a promoter, and a tag. This part doesn’t have a terminator because its produced to create a composite part with other gene involved in 2-nonanone synthesis. The promoter will therefore be associated with the design of the last gene of the composite part (Mlut_11700: BBa_K3038004). The promoter is inducible to arabinose. This allows a controlled expression of the synthetic gene to avoid any effect of toxicity. In addition, arabinose is an inexpensive inducer and very present in the laboratories of our university. This part is already exciting with number BBa_K1472601. But we decided to improve it by adding a 6-his tag. This allows to purify and detect the protein in the host strain by using Ni-NTA columns.
Design of the ADR-C-term gene with the Geneious Software.
Source
DNA synthesis
RFC10 Standard
GC content optimized
References
Engineering of Bacterial Methyl Ketone Synthesis for Biofuels. Ee-Been Goh,a,c Edward E. K. Baidoo,a,c Jay D. Keasling,a,c,d and Harry R. Beller. Appl Environ Microbiol. 2012 Jan; 78(1): 70–80. doi: 10.1128/AEM.06785-11. PMCID: PMC3255637. PMID: 22038610