Difference between revisions of "Part:BBa K2933163"

(Usage and Biology)
 
(4 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
<partinfo>BBa_K2933163 short</partinfo>
 
<partinfo>BBa_K2933163 short</partinfo>
  
This part consists of Tac promoter,RBS and protein coding sequence (GST+Linker e+ElBla2-1),and the biological module can be built into E.coli for protein expression.
+
This part consists of Tac promoter,RBS and protein coding sequence (GST+Linker e+ElBlaII),and the biological module can be built into E.coli for protein expression.
  
  
Line 19: Line 19:
 
<!-- -->
 
<!-- -->
 
===Usage and Biology===
 
===Usage and Biology===
This composite part is made up with three basic parts(Tac promoter,RBS a and Linker g)and a composite part(GST+Linker e+ElBla2-1). It encodes a protein which is ElBla2-1 fused with GST tag. The fusion protein is about 53.5 kD. In order to gain the highly purified target protein, we add GST tag in N-terminal of ElBla2-1 and combine the two parts with the cutting site of Prescission Protease. The fusion protein can be cut off at the cutting site by Prescission Protease. It is convenient for us to purify our target protein.<br>
+
This composite part is made up with six basic parts(Tac promoter,RBS a , Linker g, GST, Linker e and ElBlaII). It encodes a protein which is ElBlaII fused with GST tag. The fusion protein is about 53.5 kD. In order to gain the highly purified target protein, we add GST tag in N-terminal of ElBlaII and combine the two parts with the cutting site of Prescission Protease. The fusion protein can be cut off at the cutting site by Prescission Protease. It is convenient for us to purify our target protein.<br>
  
 
===Molecular cloning===
 
===Molecular cloning===
First, we used the vector pGEX-6p-1 to construct our expression plasmid. And then we converted the plasmid constructed to ''E. coli'' DH5α to expand the plasmid largely.<br>
+
First, we used the vector pET28b-sumo to construct our expression plasmid. And then we converted the plasmid constructed to ''E. coli'' DH5α to expand the plasmid largely.
 
<p style="text-align: center;">
 
<p style="text-align: center;">
   [[File:TJUSLS China--Elbla2-1-PCR.png]]<br>
+
   [[File:TJUSLS China--Elbla2-1-PCR.png|600px]]<br>
'''Figure 1.'''  Left: The PCR result of Elbla2-1. Right: The verification results by enzyme digestion.<br>
+
'''Figure 1.'''  Left: The PCR result of ElblaII. Right: The verification results by enzyme digestion.<br>
 
</p>
 
</p>
 
After verification, it was determined that the construction is successful. We converted the plasmid to ''E. coli'' BL21(DE3) for expression and purification.<br>
 
After verification, it was determined that the construction is successful. We converted the plasmid to ''E. coli'' BL21(DE3) for expression and purification.<br>
 
===Expression and purification===
 
'''Pre-expression:'''<br>
 
The bacteria were cultured in 5mL LB liquid medium with ampicillin(100 μg/mL final concentration) in 37℃ overnight.<br>
 
===References===
 
[1] Girlich D, Poirel L, Nordmann P, Diversity of naturally occurring Ambler class B metallo-β-lactamases in Erythrobacter spp. The Journal of Antimicrobial Chemotherapy [31 Jul 2012, 67(11):2661-2664]
 

Latest revision as of 13:03, 20 October 2019


Tac promoter+RBS a+Linker g+GST+Linker e+ElBlaII

This part consists of Tac promoter,RBS and protein coding sequence (GST+Linker e+ElBlaII),and the biological module can be built into E.coli for protein expression.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1278
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 181


Usage and Biology

This composite part is made up with six basic parts(Tac promoter,RBS a , Linker g, GST, Linker e and ElBlaII). It encodes a protein which is ElBlaII fused with GST tag. The fusion protein is about 53.5 kD. In order to gain the highly purified target protein, we add GST tag in N-terminal of ElBlaII and combine the two parts with the cutting site of Prescission Protease. The fusion protein can be cut off at the cutting site by Prescission Protease. It is convenient for us to purify our target protein.

Molecular cloning

First, we used the vector pET28b-sumo to construct our expression plasmid. And then we converted the plasmid constructed to E. coli DH5α to expand the plasmid largely.

TJUSLS China--Elbla2-1-PCR.png
Figure 1. Left: The PCR result of ElblaII. Right: The verification results by enzyme digestion.

After verification, it was determined that the construction is successful. We converted the plasmid to E. coli BL21(DE3) for expression and purification.