Difference between revisions of "Part:BBa K2665006"

 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
 
<partinfo>BBa_K2665006 short</partinfo>
 
<partinfo>BBa_K2665006 short</partinfo>
  
This is a vacuolar H+-pyrophosphatase of Arabidopsis thaliana. This protein functions as a proton pump on the vacuolar membrane. Several papers have found that overexpression of AVP1 increases the salt tolerance of some plants such as tomato, rice and cotton. Experiments carried out on transgenic plants showed that as the AVP1 expression level increased the accumulation and retention of solutes was higher than that of the wild type.
+
This part codes the AVP1. <br>
 +
We introduced this protein using TDH3 promoter. More detail of this protein in the page of   ''' [https://parts.igem.org/Part:BBa_K2665015  BBa_K2665015] '''
  
  
Line 18: Line 19:
 
Vijaya Pasapula, Guoxin Shen et al. (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions, Plant Biotechnology Journal 88-99
 
Vijaya Pasapula, Guoxin Shen et al. (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions, Plant Biotechnology Journal 88-99
  
R. Gaxiola, J.Li.S et al. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump, Proceedings of the National Academy of Sciences 11444-11449
+
R. Gaxiola, J.Li et al. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump, Proceedings of the National Academy of Sciences 11444-11449
  
 +
S.Park, J.Li et al. (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants, Proceedings of the National Academy of Sciences 102 18830-18835
 +
 +
F.Zhao, X.Zhang et al. (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1, Molecular Breeding 17 341-353
 +
 +
S.Lv, K.Zhang et al. (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance, Plant and Cell Physiology 49 1150-1164
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Latest revision as of 14:39, 17 October 2018


AVP1

This part codes the AVP1.
We introduced this protein using TDH3 promoter. More detail of this protein in the page of BBa_K2665015


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 650
    Illegal BglII site found at 1907
    Illegal BamHI site found at 1703
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1999
    Illegal BsaI.rc site found at 2189


Reference

Vijaya Pasapula, Guoxin Shen et al. (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions, Plant Biotechnology Journal 88-99

R. Gaxiola, J.Li et al. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump, Proceedings of the National Academy of Sciences 11444-11449

S.Park, J.Li et al. (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants, Proceedings of the National Academy of Sciences 102 18830-18835

F.Zhao, X.Zhang et al. (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1, Molecular Breeding 17 341-353

S.Lv, K.Zhang et al. (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance, Plant and Cell Physiology 49 1150-1164