Difference between revisions of "Part:BBa K2740013"

 
(One intermediate revision by the same user not shown)
Line 18: Line 18:
 
<!-- -->
 
<!-- -->
 
<h2>Parameter of Protein </h2>
 
<h2>Parameter of Protein </h2>
<p align="left">Number  of amino acids: 129</p>
+
<p align="left">Number  of amino acids: 288</p>
<p align="left">Molecular  weight: 14126.33</p>
+
<p align="left">Molecular  weight: 31494.95</p>
<p align="left">Theoretical  pI: 6.51</p>
+
<p align="left">Theoretical  pI: 4.78</p>
 
<p align="left">Amino  acid composition: <br />
 
<p align="left">Amino  acid composition: <br />
   Ala  (A)  16   12.4%<br />
+
   Ala  (A)  26    9.0%<br />
   Arg  (R)   7    5.4%<br />
+
   Arg  (R)  13    4.5%<br />
   Asn  (N)   4   3.1%<br />
+
   Asn  (N)  15   5.2%<br />
   Asp  (D)   3   2.3%<br />
+
   Asp  (D)  14   4.9%<br />
   Cys  (C)     0.8%<br />
+
   Cys  (C)     2.1%<br />
   Gln  (Q)   7    5.4%<br />
+
   Gln  (Q)  13    4.5%<br />
   Glu  (E)  11    8.5%<br />
+
   Glu  (E)  28    9.7%<br />
   Gly  (G)  10    7.8%<br />
+
   Gly  (G)  28    9.7%<br />
   His  (H)     3.9%<br />
+
   His  (H)     1.4%<br />
   Ile  (I)    10   7.8%<br />
+
   Ile  (I)    22   7.6%<br />
   Leu  (L)  10    7.8%<br />
+
   Leu  (L)  27    9.4%<br />
   Lys  (K)   6    4.7%<br />
+
   Lys  (K)  14    4.9%<br />
   Met  (M)  5     3.9%<br />
+
   Met  (M)  11   3.8%<br />
   Phe  (F)   7     5.4%<br />
+
   Phe  (F)   8     2.8%<br />
   Pro  (P)   4     3.1%<br />
+
   Pro  (P)   8     2.8%<br />
   Ser  (S)   7     5.4%<br />
+
   Ser  (S)   9     3.1%<br />
   Thr  (T)   5     3.9%<br />
+
   Thr  (T)  17    5.9%<br />
   Trp  (W)  1     0.8%<br />
+
   Trp  (W)  0     0.0%<br />
   Tyr  (Y)     0.0%<br />
+
   Tyr  (Y)     2.8%<br />
   Val  (V)  10    7.8%<br />
+
   Val  (V)   17   5.9%<br />
   Pyl (O)   0     0.0%<br />
+
   Pyl (O)   0     0.0%<br />
 
   Sec  (U)   0    0.0%</p>
 
   Sec  (U)   0    0.0%</p>
 
<p align="left"> (B)   0          0.0%<br />
 
<p align="left"> (B)   0          0.0%<br />
   (Z)   0   0.0%<br />
+
   (Z)   0        0.0%<br />
 
   (X)   0          0.0%</p>
 
   (X)   0          0.0%</p>
 
<p align="left">&nbsp;</p>
 
<p align="left">&nbsp;</p>
<p align="left">Total  number of negatively charged residues (Asp + Glu): 14<br />
+
<p align="left">Total  number of negatively charged residues (Asp + Glu): 42<br />
   Total  number of positively charged residues (Arg + Lys): 13</p>
+
   Total  number of positively charged residues (Arg + Lys): 27</p>
 
<p align="left">Atomic  composition:</p>
 
<p align="left">Atomic  composition:</p>
<p align="left">Carbon      C           627<br />
+
<p align="left">Carbon      C          1372<br />
   Hydrogen    H         1006<br />
+
   Hydrogen    H         2213<br />
   Nitrogen    N            178<br />
+
   Nitrogen    N            377<br />
   Oxygen      O          181<br />
+
   Oxygen      O          435<br />
   Sulfur      S               6</p>
+
   Sulfur      S              17</p>
<p align="left">Formula:  C627H1006N178O181S6<br />
+
<p align="left">Formula:  C1372H2213N377O435S17<br />
   Total  number of atoms: 1998</p>
+
   Total  number of atoms: 4414</p>
 
<p align="left">Extinction  coefficients:</p>
 
<p align="left">Extinction  coefficients:</p>
 +
<p align="left">This  protein does not contain any Trp residues. Experience shows that<br />
 +
  this  could result in more than 10% error in the computed extinction coefficient.</p>
 
<p align="left">Extinction  coefficients are in units of  M-1 cm-1,  at 280 nm measured in water.</p>
 
<p align="left">Extinction  coefficients are in units of  M-1 cm-1,  at 280 nm measured in water.</p>
<p align="left">Ext.  coefficient     5500<br />
+
<p align="left">Ext.  coefficient    12295<br />
   Abs  0.1% (=1 g/l)   0.389, assuming all pairs  of Cys residues form cystines</p>
+
   Abs  0.1% (=1 g/l)   0.390, assuming all pairs  of Cys residues form cystines</p>
 
<p align="left">&nbsp;</p>
 
<p align="left">&nbsp;</p>
<p align="left">Ext.  coefficient     5500<br />
+
<p align="left">Ext.  coefficient    11920<br />
   Abs  0.1% (=1 g/l)   0.389, assuming all Cys  residues are reduced</p>
+
   Abs  0.1% (=1 g/l)   0.378, assuming all Cys  residues are reduced</p>
 
<p align="left">Estimated  half-life:</p>
 
<p align="left">Estimated  half-life:</p>
 
<p align="left">The  N-terminal of the sequence considered is M (Met).</p>
 
<p align="left">The  N-terminal of the sequence considered is M (Met).</p>
 
<p align="left">The  estimated half-life is: 30 hours (mammalian reticulocytes, in vitro).<br />
 
<p align="left">The  estimated half-life is: 30 hours (mammalian reticulocytes, in vitro).<br />
   &gt;20 hours (yeast, in vivo).<br />
+
   &gt;20 hours (yeast, in vivo).<br />
   &gt;10 hours (Escherichia coli, in vivo).</p>
+
   &gt;10 hours (Escherichia coli, in vivo).</p>
 
<p align="left">&nbsp;</p>
 
<p align="left">&nbsp;</p>
 
<p align="left">Instability  index:</p>
 
<p align="left">Instability  index:</p>
<p align="left">The  instability index (II) is computed to be 47.67<br />
+
<p align="left">The  instability index (II) is computed to be 39.05<br />
   This  classifies the protein as unstable.</p>
+
   This  classifies the protein as stable.</p>
 
<p align="left">&nbsp;</p>
 
<p align="left">&nbsp;</p>
<p align="left">Aliphatic  index: 95.35</p>
+
<p align="left">Aliphatic  index: 92.50</p>
<p align="left">Grand  average of hydropathicity (GRAVY): 0.051</p>
+
<p align="left">Grand  average of hydropathicity (GRAVY): -0.161</p>
 
<div>
 
<div>
 
   <h2>Design Notes</h2>
 
   <h2>Design Notes</h2>
 
</div>
 
</div>
 
<p align="left">Nitrogenase  is a complex enzyme system consisting of nine protein components. Additionally,  to maintain stoichiometry of these protein components is an essential  requirement for nitrogenase biosynthesis and activity. However, there is only  one copy of each structure gene present  in the nif gene cluster. Therefore, cloning each of these nif genes and setting  as independent part can facilitate the regulation of balancing expression  ratios from the transcription and/or translation level(s) when they are heterogeneously expressed in non-diazotrophic hosts.</p>
 
<p align="left">Nitrogenase  is a complex enzyme system consisting of nine protein components. Additionally,  to maintain stoichiometry of these protein components is an essential  requirement for nitrogenase biosynthesis and activity. However, there is only  one copy of each structure gene present  in the nif gene cluster. Therefore, cloning each of these nif genes and setting  as independent part can facilitate the regulation of balancing expression  ratios from the transcription and/or translation level(s) when they are heterogeneously expressed in non-diazotrophic hosts.</p>
<h2>Molecular modeling of nifX</h2>
+
<h2>Molecular modeling of nifH</h2>
<p align="left">To  learn more about the molecular structure of nitrogen fixation protein NifX that  favors the insertion of molybdenum-iron protein cofactors into nitrogenase  encoded by nifX, we use Swiss-Model to get the molecular model.</p>
+
<p align="left">To  learn more about the molecular structure of nitrogenase reductase NifH encoded by nifH, we use Swiss-Model to get the molecular model of nitrogenase reductase  NifH.</p>
[[File:T--Nanjing-China--nifX-structure.png|500px|thumb|center]]
+
[[File:T--Nanjing-China--nifH-structure.png|500px|thumb|center]]
<h2>Confirmation of Expression of nifX</h2>
+
<h2>Confirmation of Expression of <em>nifH</em></h2>
<p align="left">We test expression profiles of each structure gene in the nif cluster that overexpressed in EJNC by conducting Real-time Quantitative PCR(qPCR). Relative expression compared to the housekeeping gene 16S rRNA is shown.</p>
+
<p>We test expression profiles of each structure gene in the&nbsp;nif&nbsp;cluster that overexpressed in engineered E.coli JM109 (EJNC). E.coli JM109 (EJ) severs  as control by conducting Real-time Quantitative PCR(qPCR). Relative expression compared to the housekeeping gene 16S rRNA is shown. So we can know the  expression level of nifH in the E.coli JM109 (EJ).</p>
[[File:T--Nanjing-China--nifX.jpg|600px|thumb|center]]
+
[[File:T--Nanjing-China--nifH.jpg|600px|thumb|center|Figure 1. Expression profiles of each structure gene in the nif cluster that overexpressed in engineered E.coli JM109 (EJNC). E.coli JM109 (EJ) severs as control and relative expression compared to the housekeeping gene 16S rRNA is shown. N.D. represent not ditected.]]
<p>qRT-PCR analysis demonstrates that all the component genes of the nif cluster are significantly over expressed in EJNC whereas the transcription of these genes are no detected (N.D.) in nondiazotrophic E.coli JM109. Based on these analysis, we know nifx has a relatively low expression level.</p>
+
 
<div>
 
<div>
 
   <h2>Usage</h2>
 
   <h2>Usage</h2>
Line 93: Line 94:
 
<p>In our this year&rsquo;s project, we intends to  establish a sound and ideal whole-cell photocatalytic nitrogen fixation system.  We use the engineered <em>E. coli</em> cells to express nitrogenase and in-situ  synthesize of CdS semiconductors in the biohybrid system. Instead of  ATP-hydrolysis, such system is able to photocatalytic N2(nitrogen) to  NH3(ammonia). The biohybrid system based on engineered E. coli cells with  biosynthesis inorganic materials will likely become an alternative approach for  the convenient utilization of solar energy. So, certainly we need not only a  powerful solar power transition system but also a strong nitrogen fixation  system to improve the efficiency of our whole-cell photocatalytic nitrogen  fixation system. According to the above requirements, we choose a different nif  gene cluster from <em>Paenibacillus polymyxa</em> CR1 to test its expression  level.</p>
 
<p>In our this year&rsquo;s project, we intends to  establish a sound and ideal whole-cell photocatalytic nitrogen fixation system.  We use the engineered <em>E. coli</em> cells to express nitrogenase and in-situ  synthesize of CdS semiconductors in the biohybrid system. Instead of  ATP-hydrolysis, such system is able to photocatalytic N2(nitrogen) to  NH3(ammonia). The biohybrid system based on engineered E. coli cells with  biosynthesis inorganic materials will likely become an alternative approach for  the convenient utilization of solar energy. So, certainly we need not only a  powerful solar power transition system but also a strong nitrogen fixation  system to improve the efficiency of our whole-cell photocatalytic nitrogen  fixation system. According to the above requirements, we choose a different nif  gene cluster from <em>Paenibacillus polymyxa</em> CR1 to test its expression  level.</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p align="left">&nbsp;</p>
+
<h2>Reference</h2>
 +
<p>1. Wang, L., et al., <em>A minimal nitrogen fixation gene cluster  from Paenibacillus sp. WLY78 enables expression of active nitrogenase in  Escherichia coli.</em> PLoS Genet, 2013. <strong>9</strong>(10):  p. e1003865.<br />
 +
  2. Fixen, K.R., et  al., <em>Light-driven carbon dioxide  reduction to methane by nitrogenase in a photosynthetic bacterium.</em> Proc  Natl Acad Sci U S A, 2016. <strong>113</strong>(36):  p. 10163-7.<br />
 +
  3.  Brown, K.A., et  al., <em>Light-driven dinitrogen reduction  catalyzed by a CdS:nitrogenase MoFe protein biohybrid.</em> Science, 2016. <strong>352</strong>(6284): p. 448-50.<br />
 +
  4. Kuypers, M.M.M.,  H.K. Marchant, and B. Kartal, <em>The  microbial nitrogen-cycling network.</em> Nat Rev Microbiol, 2018. <strong>16</strong>(5): p. 263-276.<br />
 +
  5. Wei, W., et al., <em>A surface-display biohybrid approach to  light-driven hydrogen production in air.</em> Sci Adv, 2018. <strong>4</strong>(2): p. eaap9253.<br />
 +
  6. Wang, X., et  al., <em>Using synthetic biology to  distinguish and overcome regulatory and functional barriers related to nitrogen  fixation.</em> PLoS One, 2013. <strong>8</strong>(7):  p. e68677.<br />
 +
  7. Yang, J., et  al., <em>Modular electron-transport chains  from eukaryotic organelles function to support nitrogenase activity.</em> Proc  Natl Acad Sci U S A, 2017. <strong>114</strong>(12):  p. E2460-E2465.<br />
 +
  8. Yang, J., et  al., <em>Polyprotein strategy for  stoichiometric assembly of nitrogen fixation components for synthetic biology.</em> Proc Natl Acad Sci U S A, 2018. <strong>115</strong>(36):  p. E8509-E8517.<br />
 +
  9. Yang, J.G., et  al., <em>Reconstruction and minimal gene  requirements for the alternative iron-only nitrogenase in Escherichia coli.</em> Proceedings of the National Academy of Sciences of the United States of  America, 2014. <strong>111</strong>(35): p.  E3718-E3725.<br />
 +
  10. Howard, J.B. and  D.C. Rees, <em>Structural basis of biological  nitrogen fixation.</em> Chemical Reviews, 1996. <strong>96</strong>(7): p. 2965-2982.</p>

Latest revision as of 10:52, 16 October 2018


CR1 nifH

CR1 nifH encodes nitrogenase reductase NifH, which is an electron donor to the molybdenum-iron (MoFe) protein, contributing to the electron transport in the nitrogen fixation system.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 718


Parameter of Protein

Number of amino acids: 288

Molecular weight: 31494.95

Theoretical pI: 4.78

Amino acid composition:
Ala (A)  26    9.0%
Arg (R)  13    4.5%
Asn (N)  15   5.2%
Asp (D)  14   4.9%
Cys (C)   6    2.1%
Gln (Q)  13    4.5%
Glu (E)  28    9.7%
Gly (G)  28    9.7%
His (H)   4    1.4%
Ile (I)    22   7.6%
Leu (L)  27    9.4%
Lys (K)  14    4.9%
Met (M)  11   3.8%
Phe (F)   8     2.8%
Pro (P)   8     2.8%
Ser (S)   9     3.1%
Thr (T)  17    5.9%
Trp (W)  0     0.0%
Tyr (Y)   8    2.8%
Val (V)   17   5.9%
Pyl (O)   0     0.0%
Sec (U)   0    0.0%

 (B)   0         0.0%
(Z)   0       0.0%
(X)   0         0.0%

 

Total number of negatively charged residues (Asp + Glu): 42
Total number of positively charged residues (Arg + Lys): 27

Atomic composition:

Carbon      C          1372
Hydrogen    H         2213
Nitrogen    N            377
Oxygen      O          435
Sulfur      S              17

Formula: C1372H2213N377O435S17
Total number of atoms: 4414

Extinction coefficients:

This protein does not contain any Trp residues. Experience shows that
this could result in more than 10% error in the computed extinction coefficient.

Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water.

Ext. coefficient    12295
Abs 0.1% (=1 g/l)   0.390, assuming all pairs of Cys residues form cystines

 

Ext. coefficient    11920
Abs 0.1% (=1 g/l)   0.378, assuming all Cys residues are reduced

Estimated half-life:

The N-terminal of the sequence considered is M (Met).

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro).
>20 hours (yeast, in vivo).
>10 hours (Escherichia coli, in vivo).

 

Instability index:

The instability index (II) is computed to be 39.05
This classifies the protein as stable.

 

Aliphatic index: 92.50

Grand average of hydropathicity (GRAVY): -0.161

Design Notes

Nitrogenase is a complex enzyme system consisting of nine protein components. Additionally, to maintain stoichiometry of these protein components is an essential requirement for nitrogenase biosynthesis and activity. However, there is only one copy of each structure gene present in the nif gene cluster. Therefore, cloning each of these nif genes and setting as independent part can facilitate the regulation of balancing expression ratios from the transcription and/or translation level(s) when they are heterogeneously expressed in non-diazotrophic hosts.

Molecular modeling of nifH

To learn more about the molecular structure of nitrogenase reductase NifH encoded by nifH, we use Swiss-Model to get the molecular model of nitrogenase reductase NifH.

T--Nanjing-China--nifH-structure.png

Confirmation of Expression of nifH

We test expression profiles of each structure gene in the nif cluster that overexpressed in engineered E.coli JM109 (EJNC). E.coli JM109 (EJ) severs as control by conducting Real-time Quantitative PCR(qPCR). Relative expression compared to the housekeeping gene 16S rRNA is shown. So we can know the expression level of nifH in the E.coli JM109 (EJ).

Figure 1. Expression profiles of each structure gene in the nif cluster that overexpressed in engineered E.coli JM109 (EJNC). E.coli JM109 (EJ) severs as control and relative expression compared to the housekeeping gene 16S rRNA is shown. N.D. represent not ditected.

Usage

In our this year’s project, we intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N2(nitrogen) to NH3(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy. So, certainly we need not only a powerful solar power transition system but also a strong nitrogen fixation system to improve the efficiency of our whole-cell photocatalytic nitrogen fixation system. According to the above requirements, we choose a different nif gene cluster from Paenibacillus polymyxa CR1 to test its expression level.

 

Reference

1. Wang, L., et al., A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet, 2013. 9(10): p. e1003865.
2. Fixen, K.R., et al., Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A, 2016. 113(36): p. 10163-7.
3. Brown, K.A., et al., Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016. 352(6284): p. 448-50.
4. Kuypers, M.M.M., H.K. Marchant, and B. Kartal, The microbial nitrogen-cycling network. Nat Rev Microbiol, 2018. 16(5): p. 263-276.
5. Wei, W., et al., A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv, 2018. 4(2): p. eaap9253.
6. Wang, X., et al., Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation. PLoS One, 2013. 8(7): p. e68677.
7. Yang, J., et al., Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc Natl Acad Sci U S A, 2017. 114(12): p. E2460-E2465.
8. Yang, J., et al., Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc Natl Acad Sci U S A, 2018. 115(36): p. E8509-E8517.
9. Yang, J.G., et al., Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(35): p. E3718-E3725.
10. Howard, J.B. and D.C. Rees, Structural basis of biological nitrogen fixation. Chemical Reviews, 1996. 96(7): p. 2965-2982.