Difference between revisions of "Part:BBa K2665015"
(7 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K2665015 short</partinfo> | <partinfo>BBa_K2665015 short</partinfo> | ||
− | |||
− | <!-- Add more about the biology of this part here | + | This is a vacuolar H+-pyrophosphatase of Arabidopsis thaliana. This protein functions as a proton pump on the vacuolar membrane. Several papers have found that overexpression of AVP1 increases the salt tolerance of some plants such as tomato, rice and cotton. Experiments carried out on transgenic plants showed that as the AVP1 expression level increased the accumulation and retention of solutes was higher than that of the wild type. |
+ | |||
+ | <!-- Add more about the biology of this part here--> | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
+ | |||
+ | |||
+ | ==Characterization== | ||
+ | [[File:T--Kyoto--AVP1.png|400px]] <br> | ||
+ | [[File:T--Kyoto--cont.png|400px]]<br> | ||
+ | |||
+ | Pictures shown above is colonies of<i> S. cerevisiae</i> ΔENA1- strain on SD midium containing 400mM NaCl. In this spot assay, part BBa_K2665015 cloned to a yeast high-copy vector was used. <br> | ||
+ | This result shows that AVP1 greatly contributes to salt tolerance of yeasts. | ||
+ | |||
+ | |||
+ | |||
+ | [[File:T--Kyoto--K_con.jpeg|400px]] <br> | ||
+ | [[File:T--Kyoto--Na con.jpeg|400px]]<br> | ||
+ | The graph shown above is K+ or Na+ concentration in cells of<i> S.cerevisiae</i> ΔENA1ΔNHA1 strain. Each gene in the graph was cloned to yeast vectors, which were introduced to yeasts. The word “high” means high copy plasmid and the word “low” means low copy plasmids. These transformed yeasts are cultured in SD containing 400mM NaCl. Detailed data are on our wiki.'''[http://2018.igem.org/Team:Kyoto Kyoto2018]'''<br> | ||
+ | These results show that AVP1 contributes to accumulation of K+ and Na+ in a yeast cell.<br><br> | ||
+ | <p> | ||
+ | This is interpreted as an increment of the H+ concentration in the vacuole, which promotes the relatively inactive endogenous NHX1 function of Saccharomyces cerevisiae and isolates cytoplasmic Na+ in vacuoles. We believe that the increase in the total Na+ content in the cells is due to the expression of the AVP1 gene and this is caused by the same mechanism as this. | ||
+ | </p> | ||
+ | |||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
<partinfo>BBa_K2665015 SequenceAndFeatures</partinfo> | <partinfo>BBa_K2665015 SequenceAndFeatures</partinfo> | ||
+ | |||
+ | ===Reference=== | ||
+ | Zhao, F.‐Y., Zhang, X.‐J., Li, P.‐H., Zhao, Y.‐X. and Zhang, H. (2006) Co‐expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol. Breeding, 17, 341–353.<br> | ||
+ | |||
+ | Gao, F., Gao, Q., Duan, X.‐G., Yue, G.‐D., Yang, A.‐F. and Zhang, J.‐R. (2006) Cloning of an H+‐PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J. Exp. Bot., 57, 3259–3270.<br> | ||
+ | |||
+ | Lv, S., Zhang, K., Gao, Q., Lian, L., Song, Y. and Zhang, J.‐R. (2008) Overexpression of an H+‐PPase from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performanc e. Plant Cell Physiol., 49, 1150–1164.<br> | ||
+ | |||
+ | Pasapula, Vijaya, -R. (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions Using AVP1 to improve drought and salt tolerance in cotton. Plant biotechnology journal., 9, 88-99.<br> | ||
+ | |||
+ | Gaxiola, R A.-R. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences – PNAS., 98,11444-11449.<br> | ||
Latest revision as of 23:46, 17 October 2018
TDH3-AVP1-6xHis-CYC
This is a vacuolar H+-pyrophosphatase of Arabidopsis thaliana. This protein functions as a proton pump on the vacuolar membrane. Several papers have found that overexpression of AVP1 increases the salt tolerance of some plants such as tomato, rice and cotton. Experiments carried out on transgenic plants showed that as the AVP1 expression level increased the accumulation and retention of solutes was higher than that of the wild type.
Usage and Biology
Characterization
Pictures shown above is colonies of S. cerevisiae ΔENA1- strain on SD midium containing 400mM NaCl. In this spot assay, part BBa_K2665015 cloned to a yeast high-copy vector was used.
This result shows that AVP1 greatly contributes to salt tolerance of yeasts.
The graph shown above is K+ or Na+ concentration in cells of S.cerevisiae ΔENA1ΔNHA1 strain. Each gene in the graph was cloned to yeast vectors, which were introduced to yeasts. The word “high” means high copy plasmid and the word “low” means low copy plasmids. These transformed yeasts are cultured in SD containing 400mM NaCl. Detailed data are on our wiki.[http://2018.igem.org/Team:Kyoto Kyoto2018]
These results show that AVP1 contributes to accumulation of K+ and Na+ in a yeast cell.
This is interpreted as an increment of the H+ concentration in the vacuole, which promotes the relatively inactive endogenous NHX1 function of Saccharomyces cerevisiae and isolates cytoplasmic Na+ in vacuoles. We believe that the increase in the total Na+ content in the cells is due to the expression of the AVP1 gene and this is caused by the same mechanism as this.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1341
Illegal BglII site found at 2598
Illegal BamHI site found at 2394
Illegal BamHI site found at 3030 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 2690
Illegal BsaI.rc site found at 2880
Reference
Zhao, F.‐Y., Zhang, X.‐J., Li, P.‐H., Zhao, Y.‐X. and Zhang, H. (2006) Co‐expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol. Breeding, 17, 341–353.
Gao, F., Gao, Q., Duan, X.‐G., Yue, G.‐D., Yang, A.‐F. and Zhang, J.‐R. (2006) Cloning of an H+‐PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J. Exp. Bot., 57, 3259–3270.
Lv, S., Zhang, K., Gao, Q., Lian, L., Song, Y. and Zhang, J.‐R. (2008) Overexpression of an H+‐PPase from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performanc e. Plant Cell Physiol., 49, 1150–1164.
Pasapula, Vijaya, -R. (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions Using AVP1 to improve drought and salt tolerance in cotton. Plant biotechnology journal., 9, 88-99.
Gaxiola, R A.-R. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences – PNAS., 98,11444-11449.