Difference between revisions of "Part:BBa K2533047:Design"
(2 intermediate revisions by one other user not shown) | |||
Line 7: | Line 7: | ||
===Design Notes=== | ===Design Notes=== | ||
− | + | Compared with cyanobacteria, we find Rhodopseudomonas palustris is more suitable than cyanobacteria to provide Lactate for Shewenella due to its charactestics of Anaerobic respiration.Therefore, we decided to modify Rhodopseudomonas palustris so that it could produce lactate under anaerobic condition and transport lactate to the extracellular. And we have found that if we want to enhance the production of lactate from Rhodopseudomonas palustris, we can promote the convertion efficiency of pyruvate to D-lactate and malate to L-lactate. Therefore, we decided to use this two genes, mleS and ldhA, to help Rhodopseudomonas palustris produce lactate. | |
− | + | ||
− | + | ||
===Source=== | ===Source=== | ||
Line 16: | Line 14: | ||
===References=== | ===References=== | ||
+ | 【1】:Henan journal of animal husbandry and veterinary medicine,by Wang yue xian ; Liu de hai | ||
+ | 【2】:The Capacity of Photosynthesis Bacteria Rhodopseudomonas palustris Assimilating to Phosphate, Bulletin of Science and Technology, 2002, issue 2, pp 142-146 | ||
+ | 【3】:KEGG, https://www.genome.jp/kegg/pathway.html | ||
+ | 【4】:Cloning and sequence analysis of the gene encoding Lactococcus lactis malolactic enzyme: relationships with malic enzymes FEMS Microbiol Lett. 1994 Feb 1;116(1):79-86 | ||
+ | 【5】:Fine tuning the transcription of ldhA for d-lactate production August 2012, Volume 39, Issue 8, pp 1209–1217 | ||
+ | 【6】:Transport of L-Lactate, D-Lactate, and Glycolate by the LldP and GlcA Membrane Carriers of Escherichia coli Volume 290, Issue 2, 18 January 2002, Pages 824-829 | ||
+ | 【7】:Enhancement of Hydrogen Production and Carbon Fixation in Purple Nonsulfur Bacterium Bacterium by Synthetic Biology Shou-Chen Lo | ||
+ | 【8】:Jcat, http://www.jcat.de/#opennewwindow |
Latest revision as of 16:21, 17 October 2018
RBS-ldhA
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 247
Illegal NgoMIV site found at 457 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 982
Design Notes
Compared with cyanobacteria, we find Rhodopseudomonas palustris is more suitable than cyanobacteria to provide Lactate for Shewenella due to its charactestics of Anaerobic respiration.Therefore, we decided to modify Rhodopseudomonas palustris so that it could produce lactate under anaerobic condition and transport lactate to the extracellular. And we have found that if we want to enhance the production of lactate from Rhodopseudomonas palustris, we can promote the convertion efficiency of pyruvate to D-lactate and malate to L-lactate. Therefore, we decided to use this two genes, mleS and ldhA, to help Rhodopseudomonas palustris produce lactate.
Source
Escherichia coli str. K-12 substr. MG1655
References
【1】:Henan journal of animal husbandry and veterinary medicine,by Wang yue xian ; Liu de hai 【2】:The Capacity of Photosynthesis Bacteria Rhodopseudomonas palustris Assimilating to Phosphate, Bulletin of Science and Technology, 2002, issue 2, pp 142-146 【3】:KEGG, https://www.genome.jp/kegg/pathway.html 【4】:Cloning and sequence analysis of the gene encoding Lactococcus lactis malolactic enzyme: relationships with malic enzymes FEMS Microbiol Lett. 1994 Feb 1;116(1):79-86 【5】:Fine tuning the transcription of ldhA for d-lactate production August 2012, Volume 39, Issue 8, pp 1209–1217 【6】:Transport of L-Lactate, D-Lactate, and Glycolate by the LldP and GlcA Membrane Carriers of Escherichia coli Volume 290, Issue 2, 18 January 2002, Pages 824-829 【7】:Enhancement of Hydrogen Production and Carbon Fixation in Purple Nonsulfur Bacterium Bacterium by Synthetic Biology Shou-Chen Lo 【8】:Jcat, http://www.jcat.de/#opennewwindow