Difference between revisions of "Part:BBa K2377014"
(3 intermediate revisions by the same user not shown) | |||
Line 19: | Line 19: | ||
So, we substitute Zinc-Responsive Two-Component regulatory system for the copper one in BBa_K1755301. Successfully construct a new heavy metal sensor. | So, we substitute Zinc-Responsive Two-Component regulatory system for the copper one in BBa_K1755301. Successfully construct a new heavy metal sensor. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Reference | Reference |
Latest revision as of 22:59, 31 October 2017
zarp, zinc two-component relulatory system
Improved target: BBa_K1755301(K1755024、K1755305、K1755303)
Improved form We replaced a sensor element(Copper-Responsive Two-Component System BBa_K190017)for the Zinc-Responsive Two-Component regulatory system (contains σ54 promoter).
Mechanism of changed sensor The mechanism of Zinc sensor is related to a intrinsic signaling pathway in Ecoli. Which is known that many sensing proteins ZraS immobilized on the membrane of cell. And when Zn2+ show up in periplasmic space, the ions will combine with ZraS and trigger it autophosphorylation. (ZraS*) The phosphorylation signal will transmit from ZraS* to ZraR, then ZraR* come to ZraR(HydG) binding site[1] that will make σ54promoter start downstream transcription. (ZraS* ,ZraR* means activated condition.)
So, we substitute Zinc-Responsive Two-Component regulatory system for the copper one in BBa_K1755301. Successfully construct a new heavy metal sensor.
Reference
[1] Leonhartsberger S, Huber A, Lottspeich F, et al. The hydH/G Genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system.[J]. Journal of Molecular Biology, 2001, 307(1):93-105. [2] Munson GP1, Lam DL, Outten FW, O'HalloranTV. Identification of acopper-responsive two-component system on the chromosome of Escherichia coli K-12. [3] PedorolluD1,2, The ribB FMN riboswaith from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. FEBS J. 2015 Aug;282(16):3230-42. doi: 10.1111/febs.13226. Epub 2015 Feb 27.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]