Difference between revisions of "Part:BBa K2230025"

 
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
<partinfo>BBa_K2230025 short</partinfo>
 
<partinfo>BBa_K2230025 short</partinfo>
  
Salmonella typhimurium LT2 has two glucose-specific transporter systems, PTS system and sodium/glucose cotransporter. PTS system contains two subunits IIA encoded by crr and IIBC by ptsG which are assembled to a high-affinity active transporter. The other is a Na+/glucose cotransporter encoded by STM1128 that contributes to facilitated transport with lower glucose affinity. Based on our research, the glucose transporter of Salmonella has a lower Km compared to human small intestine, Staphylococcus and E. coli, indicating a higher efficiency for glucose uptake. In our project, we created the glucose transporter device and genetically engineer microbes with these two systems.
+
''Salmonella typhimurium'' LT2 has two glucose-specific transporter systems, PTS system and sodium/glucose cotransporter. PTS system contains two subunits IIA encoded by crr and IIBC by ptsG which are assembled to a high-affinity active transporter. The other is a Na+/glucose cotransporter encoded by STM1128 that contributes to facilitated transport with lower glucose affinity.  
 +
 
 +
 
 +
=== Research ===
 +
Based on our research, the glucose transporter of ''Salmonella'' has a lower Km compared to human small intestine, ''Staphylococcus'' and ''E. coli'', indicating a higher efficiency for glucose uptake. In our study, we demonstrated glucose absorption ability by overexpressing each of these two systems from ''Salmonella'' in ''E. coli''. Please go to our wiki page ([http://2017.igem.org/Team:Mingdao/Demonstrate Mingdao iGEM 2017]) for more information.
 +
 
 +
[[File:Mingdaophil1026-2.png|550px|center]]
 +
 
 +
 
 +
 
 +
=== Cloning ===
 +
The RBS-STM1128 part (BBa_K2230023) was assembled with Double Terminator/pSB1C3 (BBa_B0015)
 +
 
 +
[[File:Mingdaophil1026-3.jpeg|400px|center]]
 +
 
 +
 
 +
 
 +
=== Reference ===
 +
1. Glucose Galactose Malabsorption. American Journal of Physiology - Gastrointestinal and Liver Physiology 1998;275:G879-G882
 +
 
 +
2. Functional Properties and Genomics of Glucose Transporters. Curr Genomics. 2007;8(2): 113–128.
 +
 
 +
3. The SLC2 (GLUT) Family of Membrane Transporters. Mol Aspects Med. 2013;34(0): 121–138.
 +
 
 +
4. Glucose and Glycolysis Are Required for the Successful Infection of Macrophages and Mice by Salmonella enterica Serovar Typhimurium. Infect Immun. 2009;77(7): 3117–3126.
 +
 
  
Cloning: The RBS-STM1128 part (BBa_K2230023) was assembled with Double Terminator/pSB1C3 (BBa_B0015)
 
  
  

Latest revision as of 05:47, 26 October 2017


RBS-STM1128-TT/pSB1C3

Salmonella typhimurium LT2 has two glucose-specific transporter systems, PTS system and sodium/glucose cotransporter. PTS system contains two subunits IIA encoded by crr and IIBC by ptsG which are assembled to a high-affinity active transporter. The other is a Na+/glucose cotransporter encoded by STM1128 that contributes to facilitated transport with lower glucose affinity.


Research

Based on our research, the glucose transporter of Salmonella has a lower Km compared to human small intestine, Staphylococcus and E. coli, indicating a higher efficiency for glucose uptake. In our study, we demonstrated glucose absorption ability by overexpressing each of these two systems from Salmonella in E. coli. Please go to our wiki page ([http://2017.igem.org/Team:Mingdao/Demonstrate Mingdao iGEM 2017]) for more information.

Mingdaophil1026-2.png


Cloning

The RBS-STM1128 part (BBa_K2230023) was assembled with Double Terminator/pSB1C3 (BBa_B0015)

Mingdaophil1026-3.jpeg


Reference

1. Glucose Galactose Malabsorption. American Journal of Physiology - Gastrointestinal and Liver Physiology 1998;275:G879-G882

2. Functional Properties and Genomics of Glucose Transporters. Curr Genomics. 2007;8(2): 113–128.

3. The SLC2 (GLUT) Family of Membrane Transporters. Mol Aspects Med. 2013;34(0): 121–138.

4. Glucose and Glycolysis Are Required for the Successful Infection of Macrophages and Mice by Salmonella enterica Serovar Typhimurium. Infect Immun. 2009;77(7): 3117–3126.



Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1273
  • 1000
    COMPATIBLE WITH RFC[1000]