Difference between revisions of "Part:BBa K1998009"

 
 
(20 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K1998009 short</partinfo>
 
<partinfo>BBa_K1998009 short</partinfo>
 
HYD1 is an oxygen-tolerant hydrogenase; it is a respiratory enzyme that catalyses hydrogen oxidation. It has been suggested that it functions at more positive redox potentials, which are located at the aerobic-anaerobic interface.
 
 
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
  
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K1998009 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K1998009 SequenceAndFeatures</partinfo>
 
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  
Line 18: Line 11:
 
<partinfo>BBa_K1998009 parameters</partinfo>
 
<partinfo>BBa_K1998009 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===Overview===
 +
HYD1 is an oxygen-tolerant hydrogenase; it is a respiratory enzyme that catalyses hydrogen oxidation. It has been suggested that it functions at more positive redox potentials, which are located at the aerobic-anaerobic interface. It forms one of the enzymes found in our hydrogenase pathway of our system.
 +
<br><br>
 +
<html><center><img src="https://static.igem.org/mediawiki/parts/b/b5/HydrogenPathwayUpdated2016.jpeg" alt="HydrogenProduction" height="50%"width="75%"></center></html>
 +
 +
===Biology & Literature===
 +
More specifically <i>Hyd1</i> catalyses the oxidation of hydrogen in the anaerobic respiration of <i>E.coli</i> [2] this done by working in parallel with <i>Hyd</i> 2 before fermentation is undertaken by <i>Hyd3</i> [2, 3]. <i>Hyd1</i> is a membrane bound hydrogenase that facilitates the uptake of oxidated hydrogen gas [3]. The <i>hya</i> operon encodes the Hydrogenase peptide which is initiated under anaerobic conditions as well as acidic pH levels which signals that H+ must be facilitated to move from ICF to ECF and viceverser to maintain pH levels in <i>E.coli</i> [3, 4].
 +
<br>
 +
 +
===Part Verification===
 +
 +
<html><center><img src="https://static.igem.org/mediawiki/2016/b/bd/T--Macquarie_Australia--HYDShowGel.png" " width="50%" height="35%"></center> </html>
 +
<b>Fig 1.</b> A gel consisting of EcorI/PstI double digests for the hydEF part (Lane 4) The hydEF (3611 bp) was observed as expected in the gel.
 +
 +
===Protein information===
 +
<i>Hyd1</i><br>
 +
Mass: 53.13 kDa<br>
 +
Sequence: <br>
 +
MSALVLKPCAAVSIRGSSCRARQVAPRAPLAASTVRVALATLEAPARRLGNVACAAAAPAAEAPLSHVQQALAELAKPKDDPTRKHVCVQVAPAVRVAIAETLGLAPGATT
 +
PKQLAEGLRRLGFDEVFDTLFGADLTIMEEGSELLHRLTEHLEAHPHSDEPLPMFTSCCPGWIAMLEKSYPDLIPYVSSCKSPQMMLAAMVKSYLAEKKGIAPKDMVMV
 +
SIMPCTRKQSEADRDWFCVDADPTLRQLDHVITTVELGNIFKERGINLAELPEGEWDNPMGVGSGAGVLFGTTGGVMEAALRTAYELFTGTPLPRLSLSEVRGMDGIKET
 +
NITMVPAPGSKFEELLKHRAAARAEAAAHGTPGPLAWDGGAGFTSEDGRGGITLRVAVANGLGNAKKLITKMQAGEAKYDFVEIMACPAGCVGGGGQPRSTDKAITQKR
 +
QAALYNLDEKSTLRRSHENPSIRELYDTYLGEPLGHKAHELLHTHYVAGGVEEKDEKK
 +
<br>
 +
 +
===References===
 +
[1] Nair RR, Emmons MF, Cress AE, Argilagos RF, Lam K, Kerr WT, Wang HG, Dalton WS, Hazlehurst LA. HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Molecular cancer therapeutics. 2009 Aug 1;8(8):2441-51.
 +
<br><br>
 +
[2] Redwood MD, Mikheenko IP, Sargent F, Macaskie LE. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS microbiology letters. 2008 Jan 1;278(1):48-55.
 +
<br><br>
 +
[3] Bisaillon A, Turcot J, Hallenbeck PC. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy. 2006 Sep 30;31(11):1504-8.
 +
<br><br>
 +
[4] Trchounian K, Trchounian A. Hydrogenase 2 is most and hydrogenase 1 is less responsible for H 2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. international journal of hydrogen energy. 2009 Nov 30;34(21):8839-45.

Latest revision as of 01:24, 9 October 2017


Hyd1

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 157
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Overview

HYD1 is an oxygen-tolerant hydrogenase; it is a respiratory enzyme that catalyses hydrogen oxidation. It has been suggested that it functions at more positive redox potentials, which are located at the aerobic-anaerobic interface. It forms one of the enzymes found in our hydrogenase pathway of our system.

HydrogenProduction

Biology & Literature

More specifically Hyd1 catalyses the oxidation of hydrogen in the anaerobic respiration of E.coli [2] this done by working in parallel with Hyd 2 before fermentation is undertaken by Hyd3 [2, 3]. Hyd1 is a membrane bound hydrogenase that facilitates the uptake of oxidated hydrogen gas [3]. The hya operon encodes the Hydrogenase peptide which is initiated under anaerobic conditions as well as acidic pH levels which signals that H+ must be facilitated to move from ICF to ECF and viceverser to maintain pH levels in E.coli [3, 4].

Part Verification

Fig 1. A gel consisting of EcorI/PstI double digests for the hydEF part (Lane 4) The hydEF (3611 bp) was observed as expected in the gel.

Protein information

Hyd1
Mass: 53.13 kDa
Sequence:
MSALVLKPCAAVSIRGSSCRARQVAPRAPLAASTVRVALATLEAPARRLGNVACAAAAPAAEAPLSHVQQALAELAKPKDDPTRKHVCVQVAPAVRVAIAETLGLAPGATT PKQLAEGLRRLGFDEVFDTLFGADLTIMEEGSELLHRLTEHLEAHPHSDEPLPMFTSCCPGWIAMLEKSYPDLIPYVSSCKSPQMMLAAMVKSYLAEKKGIAPKDMVMV SIMPCTRKQSEADRDWFCVDADPTLRQLDHVITTVELGNIFKERGINLAELPEGEWDNPMGVGSGAGVLFGTTGGVMEAALRTAYELFTGTPLPRLSLSEVRGMDGIKET NITMVPAPGSKFEELLKHRAAARAEAAAHGTPGPLAWDGGAGFTSEDGRGGITLRVAVANGLGNAKKLITKMQAGEAKYDFVEIMACPAGCVGGGGQPRSTDKAITQKR QAALYNLDEKSTLRRSHENPSIRELYDTYLGEPLGHKAHELLHTHYVAGGVEEKDEKK

References

[1] Nair RR, Emmons MF, Cress AE, Argilagos RF, Lam K, Kerr WT, Wang HG, Dalton WS, Hazlehurst LA. HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Molecular cancer therapeutics. 2009 Aug 1;8(8):2441-51.

[2] Redwood MD, Mikheenko IP, Sargent F, Macaskie LE. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS microbiology letters. 2008 Jan 1;278(1):48-55.

[3] Bisaillon A, Turcot J, Hallenbeck PC. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy. 2006 Sep 30;31(11):1504-8.

[4] Trchounian K, Trchounian A. Hydrogenase 2 is most and hydrogenase 1 is less responsible for H 2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. international journal of hydrogen energy. 2009 Nov 30;34(21):8839-45.