Difference between revisions of "Part:BBa K1045012:Experience"
(→Applications of BBa_K1045012) |
(→Characterization of the Reporter System in a Multi-Well Plate Reader) |
||
(22 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
===Applications of BBa_K1045012=== | ===Applications of BBa_K1045012=== | ||
− | This composite part seems to be funtional, as the characterization of our DarR reporter system [[Part:BBa_K1045017|BBa_K1045017]] indicated. We saw that from the control plasmid [[Part:BBa_K1045013|BBa_K1045013]] | + | This composite part seems to be funtional, as the characterization of our DarR reporter system [[Part:BBa_K1045017|BBa_K1045017]] indicated. We saw that from the control plasmid [[Part:BBa_K1045013|BBa_K1045013]], which harbors '''BBa_K1045012''' upstream of a GFP coding sequence, GFP is expressed. This shows that the promoter in '''BBa_K1045012''' is active in the absence of DarR ([[Part:BBa_K1045001|BBa_K1045001]]). Moreover, when the plasmid encodes for DarR, ''gfp'' expression is abolished. This indicates that DarR might be expressed and that it can bind to the DarR operator. Hence, [[Part:BBa_K1045000|BBa_K1045000]] found in '''BBa_K1045012''' is functional. The sections below describe the characterization experiments for the DarR reporter system [[Part:BBa_K1045017|BBa_K1045017]]. |
+ | |||
+ | == Microscope Data == | ||
+ | |||
+ | For characterization, ''E. coli'' BL21 was transformed either with [[Part:BBa_K1045017|BBa_K1045017]] or with [[Part:BBa_K1045013|BBa_K1045013]] as a control. Both strains were grown in the abscence of c-di-AMP and subjected to fluorescence microscopy. | ||
+ | |||
+ | In [[Part:BBa_K1045013|BBa_K1045013]], ''gfp'' is placed downstream of a strong promoter and the DarR operator. This vector does not encode for DarR. The strong fluorescence of the cells transformed with [[Part:BBa_K1045013|BBa_K1045013]] ('''Fig. 1''' ''top'') indicated that GFP was expressed. However, when transformed with [[Part:BBa_K1045017|BBa_K1045017]] ('''Fig. 1''' ''bottom''), the cells showed almost no fluorescence. In contrast to [[Part:BBa_K1045013|BBa_K1045013]], [[Part:BBa_K1045017|BBa_K1045017]] encodes for DarR. The low fluorescence suggested that DarR was expressed and active as a repressor down-regulating ''gfp'' transcription. In addition, these results showed that the promoter [[Part:BBa_J23110|BBa_J23110]] and the DarR operator [[Part:BBa_K1045000|BBa_K1045000]] were functional in regulating GFP expression. | ||
+ | |||
+ | |||
+ | |||
+ | [[File:-DarR.jpg|420px|thumb|'''Fig. 1.''': ''Top'': ''E. coli'' transformed with a control plasmid encoding [[Part:BBa_K1045013|BBa_K1045013]]. ''Bottom'': ''E. coli'' transformed with a plasmid harboring the DarR reporter system [[Part:BBa_K1045017|BBa_K1045017]]. Cells of both strains were cultured without c-di-AMP and analyzed by fluorescence microscopy. Both pictures represent merges of a bright field image and a GFP fluorescence image. The exposure time used to record GFP fluorescence was in both cases 2 seconds.[[File:+DarR.jpg|420px]]|center]] | ||
+ | |||
+ | '''Experimental details''': | ||
+ | ''E. coli'' cells were grown in LB medium until log phase. A culture aliquot was prepared on slides covered with 1 % agarose (in water) and the cells observed under the fluorescence microscope. For all images, the same exposure time was used. Microscope: Axioskop 40 FL fluorescence microscope; Camera: digital camera AxioCam MRm; Software for image processing: AxioVision Rel version 4.8 (Carl Zeiss, Göttingen, Germany); Objective: Neofluar series objective (×100 primary magnification); Filter set: eGFP HC-Filterset (band-pass [BP] 472/30, FT 495, and long-pass [LP] 520/35; AHF Analysentechnik, Tübingen, Germany) for GFP detection. | ||
+ | |||
+ | ==Characterization of the Reporter System in a Multi-Well Plate Reader== | ||
+ | |||
+ | We furthermore analyzed the growth and the fluorescence over time of the BL21 ''E. coli''s we transformed with the DarR reporter system construct [[Part:BBa_K1045017|BBa_K1045017]]. As a control, we employed ''E. coli'' cells harboring the [[Part:BBa_K1045013|BBa_K1045013]] plasmid. This plasmid carries only the GFP expression unit with a strong promoter and the DarR operator. It does not encode for DarR. | ||
+ | |||
+ | Using the plate reader, we quantified the strength of the DarR construct in ''E. coli''. A dilution series of c-di-AMP (0, 50, 100, 150, 300, 500 and 1000 nmol c-di-AMP) was used to test the reaction of the DarR reporter system to the nucleotide. | ||
+ | |||
+ | '''Fig. 2''' shows the growth curves recorded via the optical density (OD) at the wavelength 600 nm. The GFP fluorescence was measured at 509 nm over the time, as well. Since the fluorescence depends on the growth of the ''E. coli'' cells, the GFP fluorescence was normalized to the OD at 600 nm for each time point ('''Fig. 3'''). All graphs show the mean value of three technical replicates of one biological replicate. The error bars indicate the standard deviation. | ||
+ | |||
+ | '''Experimental setup''': total time 21 h; 15 min measurement interval; 37°C, medium shaking; 96-well titer plate; Synergy Mx Monochromator-Based Multi-Mode Microplate Reader; Gen5 V2.01 | ||
+ | |||
+ | [[File:DarR_1.png|400px|thumb|'''Fig. 2''': The growth of the ''E. coli'' cells was measured in a plate reader via the OD at 600 nm. To facilitate the differentiation between the growth phases, the OD at 600 nm is depicted in log scale. ''Top'': ''E. coli'' cells carrying the control plasmid [[Part:BBa_K1045013|BBa_K1045013]]; ''Bottom'': ''E. coli'' cells transformed with the DarR reporter system [[Part:BBa_K1045017|BBa_K1045017]]. The cells were cultured with c-di-AMP in different concentrations or without c-di-AMP. Please enlarge the pictures for better reading (click on them).[[File:DarR_2.png|400px|]]|center]] | ||
+ | |||
+ | [[File:DarR_6.png|400px|thumb|'''Fig. 3''': The GFP fluorescence measured at 509 nm was normalized to the OD at 600 nm. ''Top'': ''E. coli'' cells carrying the control plasmid [[Part:BBa_K1045013|BBa_K1045013]]; ''Bottom'': ''E. coli'' cells transformed with the DarR reporter system [[Part:BBa_K1045017|BBa_K1045017]]. The cells were cultured with c-di-AMP in different concentrations or without c-di-AMP. Please enlarge the pictures for better reading (click on them).[[File:DarR_5.png|400px|]]|center]] | ||
+ | |||
+ | |||
+ | <br style="clear:both;"/> | ||
+ | |||
+ | As in the microscope experiments described above, the expression of the reporter was only prevented, when DarR was encoded in the vector. Hence, the promoter [[Part:BBa_J23110|BBa_J23110]] and the DarR operator [[Part:BBa_K1045000|BBa_K1045000]] used to control the GFP levels were functional. | ||
===User Reviews=== | ===User Reviews=== |
Latest revision as of 13:37, 27 October 2013
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
Applications of BBa_K1045012
This composite part seems to be funtional, as the characterization of our DarR reporter system BBa_K1045017 indicated. We saw that from the control plasmid BBa_K1045013, which harbors BBa_K1045012 upstream of a GFP coding sequence, GFP is expressed. This shows that the promoter in BBa_K1045012 is active in the absence of DarR (BBa_K1045001). Moreover, when the plasmid encodes for DarR, gfp expression is abolished. This indicates that DarR might be expressed and that it can bind to the DarR operator. Hence, BBa_K1045000 found in BBa_K1045012 is functional. The sections below describe the characterization experiments for the DarR reporter system BBa_K1045017.
Microscope Data
For characterization, E. coli BL21 was transformed either with BBa_K1045017 or with BBa_K1045013 as a control. Both strains were grown in the abscence of c-di-AMP and subjected to fluorescence microscopy.
In BBa_K1045013, gfp is placed downstream of a strong promoter and the DarR operator. This vector does not encode for DarR. The strong fluorescence of the cells transformed with BBa_K1045013 (Fig. 1 top) indicated that GFP was expressed. However, when transformed with BBa_K1045017 (Fig. 1 bottom), the cells showed almost no fluorescence. In contrast to BBa_K1045013, BBa_K1045017 encodes for DarR. The low fluorescence suggested that DarR was expressed and active as a repressor down-regulating gfp transcription. In addition, these results showed that the promoter BBa_J23110 and the DarR operator BBa_K1045000 were functional in regulating GFP expression.
Experimental details: E. coli cells were grown in LB medium until log phase. A culture aliquot was prepared on slides covered with 1 % agarose (in water) and the cells observed under the fluorescence microscope. For all images, the same exposure time was used. Microscope: Axioskop 40 FL fluorescence microscope; Camera: digital camera AxioCam MRm; Software for image processing: AxioVision Rel version 4.8 (Carl Zeiss, Göttingen, Germany); Objective: Neofluar series objective (×100 primary magnification); Filter set: eGFP HC-Filterset (band-pass [BP] 472/30, FT 495, and long-pass [LP] 520/35; AHF Analysentechnik, Tübingen, Germany) for GFP detection.
Characterization of the Reporter System in a Multi-Well Plate Reader
We furthermore analyzed the growth and the fluorescence over time of the BL21 E. colis we transformed with the DarR reporter system construct BBa_K1045017. As a control, we employed E. coli cells harboring the BBa_K1045013 plasmid. This plasmid carries only the GFP expression unit with a strong promoter and the DarR operator. It does not encode for DarR.
Using the plate reader, we quantified the strength of the DarR construct in E. coli. A dilution series of c-di-AMP (0, 50, 100, 150, 300, 500 and 1000 nmol c-di-AMP) was used to test the reaction of the DarR reporter system to the nucleotide.
Fig. 2 shows the growth curves recorded via the optical density (OD) at the wavelength 600 nm. The GFP fluorescence was measured at 509 nm over the time, as well. Since the fluorescence depends on the growth of the E. coli cells, the GFP fluorescence was normalized to the OD at 600 nm for each time point (Fig. 3). All graphs show the mean value of three technical replicates of one biological replicate. The error bars indicate the standard deviation.
Experimental setup: total time 21 h; 15 min measurement interval; 37°C, medium shaking; 96-well titer plate; Synergy Mx Monochromator-Based Multi-Mode Microplate Reader; Gen5 V2.01
As in the microscope experiments described above, the expression of the reporter was only prevented, when DarR was encoded in the vector. Hence, the promoter BBa_J23110 and the DarR operator BBa_K1045000 used to control the GFP levels were functional.
User Reviews
UNIQ219ab3c9a80182ef-partinfo-00000000-QINU UNIQ219ab3c9a80182ef-partinfo-00000001-QINU