Difference between revisions of "Part:BBa K776027:Experience"

 
(Applications of BBa_K776027)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
This experience page is provided so that any user may enter their experience using this part.<BR>Please enter
 
This experience page is provided so that any user may enter their experience using this part.<BR>Please enter
Line 5: Line 4:
  
 
===Applications of BBa_K776027===
 
===Applications of BBa_K776027===
 +
<I>'''iGEM CINVESTAV_IPN_UNAM''' CHARACTERIZATION OF IGEM DISTRIBUTION BIOPARTS</I>
 +
 +
For contribute to the parts registry our team decided to make the characterization of constitutive promoters, ''in E. coli'', belonging to the family isolated from a small combinatorial library (J23101 , J23102, J23104, J23107, J23108, J2311, and J23115) which were attached to GFP, in psB1C3, to determine promoter activity, using the equipment Victor X3 Multilabel Plate Reader.
 +
 +
[[Image:Gfp1.jpg‎]]
 +
 +
'''Fig. 1 Construction of the promoter J23101 expressing GFP.'''
 +
 +
'''Methods'''
 +
 +
With the selected colonies, an overnight culture was made in M9 media(minimal media supplemented with 0.2% CAA). After 12 hours the culture was transferred to a 96 well plate at a 1:10 dilution (20 μl of culture and 180 μL of fresh M9 medium).
 +
OD and fluorescence measurements of the selected colonies were performed at intervals of 30 minutes for 16 h.
 +
From the results the PopS were calculated (polymerases per second).
 +
 +
'''Modeling'''
 +
 +
The ecuations used  for calulated de promoter activity were based on (R. K. Jason et. al 2009).
 +
 +
[[Image:ecu4.jpg]]
 +
 +
[[Image:ecu5.jpg]]
 +
 +
'''Results'''
 +
 +
In the following graphs there is shown the GFP expression in function of th time and the realtive promotor intensity.
 +
 +
 +
[[Image:graf1.jpg]]
 +
 +
[[Image:graf2.jpg]]
 +
 +
 +
With the previous results of the characterization of the promoters there is concluded that the promoter J23107, is the strongest because it produces more RPUs”
  
 
===User Reviews===
 
===User Reviews===

Latest revision as of 18:50, 29 September 2012

This experience page is provided so that any user may enter their experience using this part.
Please enter how you used this part and how it worked out.

Applications of BBa_K776027

iGEM CINVESTAV_IPN_UNAM CHARACTERIZATION OF IGEM DISTRIBUTION BIOPARTS

For contribute to the parts registry our team decided to make the characterization of constitutive promoters, in E. coli, belonging to the family isolated from a small combinatorial library (J23101 , J23102, J23104, J23107, J23108, J2311, and J23115) which were attached to GFP, in psB1C3, to determine promoter activity, using the equipment Victor X3 Multilabel Plate Reader.

Gfp1.jpg

Fig. 1 Construction of the promoter J23101 expressing GFP.

Methods

With the selected colonies, an overnight culture was made in M9 media(minimal media supplemented with 0.2% CAA). After 12 hours the culture was transferred to a 96 well plate at a 1:10 dilution (20 μl of culture and 180 μL of fresh M9 medium). OD and fluorescence measurements of the selected colonies were performed at intervals of 30 minutes for 16 h. From the results the PopS were calculated (polymerases per second).

Modeling

The ecuations used for calulated de promoter activity were based on (R. K. Jason et. al 2009).

Ecu4.jpg

Ecu5.jpg

Results

In the following graphs there is shown the GFP expression in function of th time and the realtive promotor intensity.


Graf1.jpg

Graf2.jpg


With the previous results of the characterization of the promoters there is concluded that the promoter J23107, is the strongest because it produces more RPUs”

User Reviews

UNIQf44496f1633500ca-partinfo-00000000-QINU UNIQf44496f1633500ca-partinfo-00000001-QINU