Difference between revisions of "Part:BBa K346004:Design"
JjunyiJiao (Talk | contribs) |
Spring zhq (Talk | contribs) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 9: | Line 9: | ||
[[Image:construction of MBP(lead).jpg]] | [[Image:construction of MBP(lead).jpg]] | ||
− | Similar method as MBP(mercury) | + | Similar method as was exploited in the construction of MBP(mercury) was applied to PbrR. Firstly,Sequence alignment of MerR and PbrR was carried out. Previous work showed that MerR family TFs share a highly conserved homology at their metal binding domains (Brown et al., 2003; Hobman, 2007), which implies that our strategies of bioabsorbent engineering might be applicable to other cases of heavy metals. We again designed a single-chain polypeptide consisting of two dimerization helices and metal binding loops of PbrR, to form an anti-parallel coiled coil.Figure (C) shows that the MBP was constructed by fusing two copies of metal binding domain of PbrR in tandem via the same method with mercury MBP. |
Line 15: | Line 15: | ||
===Source=== | ===Source=== | ||
− | Pro. Chuan He | + | Engineered from PbrR which was gift from Pro. Chuan He |
Line 24: | Line 24: | ||
Zeng, Q., Stalhandske, C., Anderson, M. C., Scott, R. A. & Summers, A. O. The core metal-recognition domain of MerR. Biochemistry 37, 15885-15895 (1998). | Zeng, Q., Stalhandske, C., Anderson, M. C., Scott, R. A. & Summers, A. O. The core metal-recognition domain of MerR. Biochemistry 37, 15885-15895 (1998). | ||
− | + | Mejare, M. & Bulow, L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in biotechnol. 19, 67-73(2001). | |
+ | |||
+ | Ralston, D. M. & Halloran, T. O. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. 87, 3846-3850 (1990). | ||
+ | |||
+ | Brocklehurst, K. R., Hobman, J. R., Lawley, B., Blank, L., Marshall, L. J., Brown, N. L. & Morby, A. P. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31, 893-902 (1999). | ||
+ | |||
+ | Zeng, Q., Stalhandske, C., Anderson, M. C., Scott, R. A. & Summers, A. O. The core metal-recognition domain of MerR. Biochemistry 37, 15885-15895 (1998). | ||
+ | |||
+ | Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C. E., Halloran, T. V. & Mondrago, A. Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR. Science 301, 1383-1387 (2003). | ||
+ | |||
+ | Chen, P. R. & He, C. Selective recognition of metal ions by metalloregulatory proteins. Curr. Opin. Chem. Biol. 12,214-221 (2008). | ||
+ | |||
+ | Shewchuk, L. M., Verdine, G. L., Nash, H. & Walsh, C.T. Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription. Biochemistry 28, 6140-6145 (1989). | ||
+ | |||
+ | Wright, J. G., Tsang, H. T., Penner-Hahn, J. E. & O’Halloran T.V. Coordination chemistry of the Hg-MerR metalloregulatory protein: evidence for a novel tridentate Hg-cysteine receptor sites. J. Am. Chem. Soc. 112, 2434-2435 (1990). |
Latest revision as of 03:33, 28 October 2010
RBS(B0034)_MBP(lead metal binding peptide egineered from PbrR)+Terminator(B0015)
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
Similar method as was exploited in the construction of MBP(mercury) was applied to PbrR. Firstly,Sequence alignment of MerR and PbrR was carried out. Previous work showed that MerR family TFs share a highly conserved homology at their metal binding domains (Brown et al., 2003; Hobman, 2007), which implies that our strategies of bioabsorbent engineering might be applicable to other cases of heavy metals. We again designed a single-chain polypeptide consisting of two dimerization helices and metal binding loops of PbrR, to form an anti-parallel coiled coil.Figure (C) shows that the MBP was constructed by fusing two copies of metal binding domain of PbrR in tandem via the same method with mercury MBP.
Source
Engineered from PbrR which was gift from Pro. Chuan He
References
Brown, N. L., Stoyanov, J. V. & Kidd, S. P. & Hobman, J. L. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27, 145-163 (2003).
Zeng, Q., Stalhandske, C., Anderson, M. C., Scott, R. A. & Summers, A. O. The core metal-recognition domain of MerR. Biochemistry 37, 15885-15895 (1998).
Mejare, M. & Bulow, L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in biotechnol. 19, 67-73(2001).
Ralston, D. M. & Halloran, T. O. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. 87, 3846-3850 (1990).
Brocklehurst, K. R., Hobman, J. R., Lawley, B., Blank, L., Marshall, L. J., Brown, N. L. & Morby, A. P. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31, 893-902 (1999).
Zeng, Q., Stalhandske, C., Anderson, M. C., Scott, R. A. & Summers, A. O. The core metal-recognition domain of MerR. Biochemistry 37, 15885-15895 (1998).
Changela, A., Chen, K., Xue, Y., Holschen, J., Outten, C. E., Halloran, T. V. & Mondrago, A. Molecular Basis of Metal-Ion Selectivity and Zeptomolar Sensitivity by CueR. Science 301, 1383-1387 (2003).
Chen, P. R. & He, C. Selective recognition of metal ions by metalloregulatory proteins. Curr. Opin. Chem. Biol. 12,214-221 (2008).
Shewchuk, L. M., Verdine, G. L., Nash, H. & Walsh, C.T. Mutagenesis of the cysteines in the metalloregulatory protein MerR indicates that a metal-bridged dimer activates transcription. Biochemistry 28, 6140-6145 (1989).
Wright, J. G., Tsang, H. T., Penner-Hahn, J. E. & O’Halloran T.V. Coordination chemistry of the Hg-MerR metalloregulatory protein: evidence for a novel tridentate Hg-cysteine receptor sites. J. Am. Chem. Soc. 112, 2434-2435 (1990).