Difference between revisions of "Part:BBa K343004"
(→Compatibility) |
(→Compatibility) |
||
Line 37: | Line 37: | ||
'''Plasmids''': [https://parts.igem.org/Part:pSB1C3 PSB1C3] (high-copy), [https://parts.igem.org/Part:pSB3K5 PSB3K5] (low-copy). | '''Plasmids''': [https://parts.igem.org/Part:pSB1C3 PSB1C3] (high-copy), [https://parts.igem.org/Part:pSB3K5 PSB3K5] (low-copy). | ||
− | |||
− | |||
===Safety=== | ===Safety=== |
Revision as of 19:48, 27 October 2010
Flagella overekspression
==
Background
Beta-carotene monooxygenase gene
Protein structure
Retinal
Usage and parameters
Usage
Performance
Response time: Production rate:
Plasmid stability:
Growth rate:
Compatibility
This brick has been tested in the following plasmids and stains:
Chassis: E. coli TOP10, E. coli MG1655.
Plasmids: PSB1C3 (high-copy), PSB3K5 (low-copy).
Safety
General use: It is our general consensus that this BioBrick does not pose any treat to trained peopled working in a level 1 lab. No special care is needed when working with the BioBrick.
Potential pathogenicity: We do not recommend using this BioBrick for any type of system in humans or animals.
Environmental impact: This BioBrick can be used under controlled settings, but not recommended in the wild.
Please see our risk assessment as to why we came to these conclusions.
Risk-assessment
General use
This BioBrick poses no treat to the welfare of people working with it, as long as this is done in at least a level 1 safety lab by trained people. No special care is needed when working with this BioBrick.
Potential pathogenicity
This BioBrick consists of three different parts: The first 224 amino acid residues come from the NpSopII gene from Natronomonas pharaonis, encoding a blue-light photon receptor with 15 residues removed at the C-terminal. The following 9 amino acids are a linker. The last part is HtrII fused with Tar from E. coli. The complex' first 125 amino acid residues come from HtrII and the remaining 279 from Tar ([http://2010.igem.org/Team:SDU-Denmark/safety-b#References 7]). NpHtrII is thought to function in signal transduction and activation of microbial signalling cascades ([http://2010.igem.org/Team:SDU-Denmark/safety-b#References 8]).
A single article has been written about haloarchaea in humans indicating that these played a role in patients with inflammatory bowel disease ([http://2010.igem.org/Team:SDU-Denmark/safety-b#References 9]), but there is no evidence that the genes this BioBrick is made from or any near homologs are involved in any disease processes, toxic products or invasion properties. They do not regulate the immune system in any way.
Environmental impact
The BioBrick does not produce a product that is secreted into the environment, nor is it’s gene product itself toxic. It would not produce anything that distrupt natural occurring symbiosis.
The BioBrick might increase a bacteria’s ability to find nutrients and as such ease its ability to replicate and spread in certain dark environments. On the other hand the BioBrick is very large and this will naturally slow down its replication rate. Generally we do not believe this BioBrick will make its host able to outcompete natural occurring bacteria, simply because it’s function is not something that will give its host a functional advantage.
Possible malign use
This BioBrick will not increase its hosts ability to survive in storage conditions, to be aerosoled, to be vaporized or create spores. None of its proteins regulate or affect the immune system or are pathogenic towards humans and animals.
==Resources==Datasheet for BioBrick.
PDB file for protein structure.
References
- ENZYME entry 1.14.99.36 [Internet]. [cited 2010 Oct 13];Available from: http://www.expasy.org/cgi-bin/nicezyme.pl?1.14.99.36
- von Lintig J, Dreher A, Kiefer C, Wernet MF, Vogt K. Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2001 Jan 30;98(3):1130 -1135.
- Retinal - Wikipedia, the free encyclopedia [Internet]. [cited 2010 Oct 13];Available from: http://en.wikipedia.org/wiki/Retinal
- Part:BBa K274210 - parts.igem.org [Internet]. [cited 2010 Oct 13];Available from: https://parts.igem.org/Part:BBa_K274210
- Bryant DA, Frigaard N. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 2006 Nov;14(11):488-496.
- Retinaldehyde - PubChem Public Chemical Database [Internet]. [cited 2010 Oct 13];Available from: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=1070
- ninaB neither inactivation nor afterpotential B [Drosophila melanogaster] - Gene result [Internet]. [cited 2010 Oct 13];Available from: http://www.ncbi.nlm.nih.gov/gene/41678
- von Lintig J, Vogt K. Filling the Gap in Vitamin A Research. Journal of Biological Chemistry. 2000 Apr 21;275(16):11915 -11920.
- ENZYME: 1.14.99.36 [Internet]. [cited 2010 Oct 13];Available from:http://www.genome.jp/dbget-bin/www_bget?ec:1.14.99.36
- Kelley LA & Sternberg MJE. Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols. 4, 363 - 371 (2009).
- Spiegl N, Didichenko S, McCaffery P, Langen H, Dahinden CA. Human basophils activated by mast cell-derived IL-3 express retinaldehyde dehydrogenase-II and produce the immunoregulatory mediator retinoic acid. Blood. 2008 Nov 1;112(9):3762-71.
- Russell RM. The vitamin A spectrum: from deficiency to toxicity. American Journal of Clinical Nutrition, Vol. 71, No. 4, 878-884, April 2000.
- Pasquali D, Thaller C, Eichele G. Abnormal level of retinoic acid in prostate cancer tissues. J Clin Endocrinol Metab. 1996 Jun;81(6):2186-91.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 765
Illegal BamHI site found at 500
Illegal BamHI site found at 1757 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 1361
Illegal BsaI site found at 1809