Difference between revisions of "Part:BBa K364326"
Line 12: | Line 12: | ||
Gal4 DBD | Gal4 DBD | ||
− | This protein is a positive regulator for the gene expression of the galactose-induced genes such as GAL1, GAL2, GAL7, GAL10, and MEL1 which encode for the enzymes used to convert galactose to glucose. This protein contains a fungal Zn(2)-Cys(6) binuclear cluster domain. | + | This protein is a positive regulator for the gene expression of the galactose-induced genes such as GAL1, GAL2, GAL7, GAL10, and MEL1 which encode for the enzymes used to convert galactose to glucose. This protein contains a fungal Zn(2)-Cys(6) binuclear cluster domain. |
− | [[Image:pSB1C3-Gal4-EcR.gif|800px|thumb|center|Picture of gel electrophoresis: Gal4-EcR in pSB1C3 resulting an insert of 1142 bp. ]] | + | This composite artificial transcription factor will activate any reporter or any gene in general that has a UAS (Upper Activating Sequence) 3' of it's promoter. The usual binding sites of reporters, contain multiple UAS elements. In order to have a POPS output, the LBD has to recruit activators in the cell. This can be initiated by ligand binding or by recruiting a protein that has a fused strong activator like the VP activator. |
+ | |||
+ | With this system NHR (Nuclear Hormone Receptor) ligands or NHR interacting partners can be screened. | ||
+ | |||
+ | The NHR: cofactor-VP interaction should be also broken by a potential ligand binding, this is why this setup is also suitable for ligand identification. The benefit of the cofactor-VP interaction test is that the dynamic range of the assay is much higher than the dynamic range of the normal Gal4-NHR ligand activation assay. | ||
+ | |||
+ | More info about this project on the wiki pages of Team Debrecen-Hungary 2010. [http://2010.igem.org/Team:Debrecen-Hungary] | ||
+ | |||
+ | [[Image:pSB1C3-Gal4-EcR.gif|800px|thumb|center|Picture of gel electrophoresis: Gal4-EcR in pSB1C3 resulting an insert of 1142 bp.]] | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here |
Latest revision as of 17:19, 25 October 2010
Gal4-EcR
Gal4 DBD - Ecdysone receptor LBD
Artificial eukaryotic TF made of Gal4 DBD (DNA Binding Domain) and D. Melanogaster nuclear hormone receptor LBD (Ligand Binding Domain).
EcR LBD
The ecdysone receptor is a nuclear receptor found in arthropods, where it controls development and contributes to other processes such as reproduction. The receptor is a non-covalent heterodimer of two proteins, the EcR protein and ultraspiracle protein (USP). It binds to and is activated by ecdysteroids. Pulses of 20-hydroxyecdysone occur during insect development, whereupon this hormone binds to the ecdysone receptor, a ligand-activated transcription factor found in the nuclei of insect cells. This in turn leads to the activation of many other genes, which ultimately causes physiological changes that result in ecdysis (moulting).
Gal4 DBD
This protein is a positive regulator for the gene expression of the galactose-induced genes such as GAL1, GAL2, GAL7, GAL10, and MEL1 which encode for the enzymes used to convert galactose to glucose. This protein contains a fungal Zn(2)-Cys(6) binuclear cluster domain.
This composite artificial transcription factor will activate any reporter or any gene in general that has a UAS (Upper Activating Sequence) 3' of it's promoter. The usual binding sites of reporters, contain multiple UAS elements. In order to have a POPS output, the LBD has to recruit activators in the cell. This can be initiated by ligand binding or by recruiting a protein that has a fused strong activator like the VP activator.
With this system NHR (Nuclear Hormone Receptor) ligands or NHR interacting partners can be screened.
The NHR: cofactor-VP interaction should be also broken by a potential ligand binding, this is why this setup is also suitable for ligand identification. The benefit of the cofactor-VP interaction test is that the dynamic range of the assay is much higher than the dynamic range of the normal Gal4-NHR ligand activation assay.
More info about this project on the wiki pages of Team Debrecen-Hungary 2010. [http://2010.igem.org/Team:Debrecen-Hungary]
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1132
Illegal XhoI site found at 218 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 137