(2 intermediate revisions by one other user not shown)
Line 53:
Line 53:
<center><figcaption>Figure 6. The absorbance of the solutions after incubation across 0 to 150 minutes.</figcaption></center>
<center><figcaption>Figure 6. The absorbance of the solutions after incubation across 0 to 150 minutes.</figcaption></center>
</figure></center>
</figure></center>
−
<p>As shown in Fig 6, as the incubation time increases, the absorbance of all solutions has a general increasing trend. At 120 minutes, the absorbance unit, AU, of multiple enzymes, namely, P3, P5, and P1 remains level with no notable changes. Thus we chose to incubate all solutions for 120 for any further experiments.</p>
+
<p>As shown in Fig 6, as the incubation time increases, the absorbance of all solutions has a general increasing trend.</p>
<h4>Yield test</h4>
<h4>Yield test</h4>
Line 61:
Line 61:
<center><figcaption>Figure 7. Comparison of the yield between reacting in room temperature and in 50°C. PET11a empty vector (control). P1 is bglA; P3 is therm_pelA; P5 is pelA; P6 is cex; P7 is cex _cenA.</figcaption></center>
<center><figcaption>Figure 7. Comparison of the yield between reacting in room temperature and in 50°C. PET11a empty vector (control). P1 is bglA; P3 is therm_pelA; P5 is pelA; P6 is cex; P7 is cex _cenA.</figcaption></center>
</figure></center>
</figure></center>
−
<p>It is evident that in room temperature, the combination of P3 and P7 yields the most amount of EO compared to all of the enzymes and the combination of P1+P7. At 50°C, the same trend is observed across the enzymes and enzyme groups, with the total volume of EO extracted with the combination of P3 and P7 having shown to have the highest yield at more than 1.8 mL.</p>
<p>For P5, the amount of oil extracted with the incubation in room temperature is similar to that of P3 and the PET11a control. However, P3 has a notable higher yield with incubation at 50°C than P5.</p>
<p>For P5, the amount of oil extracted with the incubation in room temperature is similar to that of P3 and the PET11a control. However, P3 has a notable higher yield with incubation at 50°C than P5.</p>
<p>In short, the combination of two enzyme extracts, P3 and P7 demonstrates visible improvement of EO yield. In contrast, the individual tests of P3 and P7 had shown a much lower volume of EO.</p>
<p>In short, the combination of two enzyme extracts, P3 and P7 demonstrates visible improvement of EO yield. In contrast, the individual tests of P3 and P7 had shown a much lower volume of EO.</p>
−
<p>In order to choose the best reacting temperature, we also compared the yield between reacting in 50°C and in room temperature. As shown, most of the data demonstrated that the yield of extraction after being reacted at 50°C is higher than that of room temperature, with the exception of water (control).</p>
+
<p>In order to choose the best reacting temperature, we also compared the yield between reacting in 50°C and in room temperature. As shown, most of the data demonstrated that the yield of extraction after being reacted at 50°C is higher than that of room temperature, with the exception of water (negative control).</p>
−
<br>
+
−
−
<h4>GCMS results</h4>
−
<p>We first incubated flowers (raw ingredient) with pectinase crude enzyme at 50C for 10 minutes, allowing the reaction to take place. We sent out the final oil product to Metware China and WeiPu Shanghai for Gas Chromatography–Mass Spectrometry (GC-MS, equipment: Agilent 8890-7000D) analysis.</p>
−
<p>The total ion current (TIC) chromatogram delineates the relative abundance of detected compounds at different retention times (RT). At RT = 10.90340476 min, we identified the peak of linalool, a naturally occurring terpene alcohol found in many flowers; at RT = 13.70656667, we found the peak of linalyl acetate, a principal component of the EOs from lavender. Compared with the abundance of linalool and linalyl acetate in the negative control group, EOs extracted with only steam distillation, we found that the abundance of these two compounds in all pectinase treated essential oil (P3, pelA_therm and P3+P7) is higher (Fig.8 and 9). We also found out that the abundance of the compounds in pectinase is higher than that of our positive control, EOs extracted with PET11a (Fig. 8 and 10). Moreover, essential oil treated with P3 exhibits the highest abundance in increasing linalool and linalyl acetate concentration among the two pectinase enzymes, which means that essential oil treating with P3 enzyme extracts will, comparatively, be more effective in increasing the two compound’s concentration.</p>
Figure 8,9,10,11. The TIC graph of different pectinase EO extracts, namely pelA_therm (P3, purple), pelA_therm+cenA (P7, pink), versus water and PET11a (black). The two conspicuous peaks are linalool and linalyl acetate, at 10.9 and 13.7 min RT correspondingly.
−
</figcaption>
−
</center>
<br>
<br>
<p>References:</p>
<p>References:</p>
Latest revision as of 13:35, 2 October 2024
pelA (Pectrobacterium astrospecticum)
This is a pectinase from Pectrobacterium astrospecticum with no thermostable ability. In the part design, we added a NSP4 tag before the sequence to enhance secretion of the protein. We used it to hydrolyze pectin.
As EO extraction is often completed with distillation at high temperatures, specific enzymes were selected for their thermostable capabilities. Beside utilizing cellulases to break down cell walls and increase the yield of essential oils (EOs). We also applied a similar method with NSP4-themostable pelA (from Thermotoga maritima BBa_K5193000) [1] and NSP4-pelA (from Pectobacterium astrospecticum BBa_K5193001) to hydrolyse pectin, a component of the middle lamella and the primary cell wall.
The activity of pectinase was measured by the DNS (3,5-dinitrosalicylic acid) method through the amount of reducing sugars produced during hydrolysis of the polysaccharide. [2]
After adding 1% pectin solution to our bacteria culture, we first incubated the solution for 2 hours at room temperature, 50°C and 90°C in order to allow for a complete reaction between the pectinase and its substrate. However, we found that similar to cellulase, the most significant impact on the absorbance reading is when the incubation takes place at 50°C. (See Fig 1.) Therefore we chose to incubate the solution for 2 hours at 50°C subsequently. After adding DNS reagent to the solution, we incubated the solution again for another 10 minutes at 50°C to stop the reaction. We then added our solution into a 96-well transparent plate for OD measurement at 540 nm. The results are shown below. (See Fig 2.)