Difference between revisions of "Part:BBa K5237023"

 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
<html>
 
<html>
 
<style>
 
<style>
  p {
+
    p {
    text-align: justify;
+
        text-align: justify;
    margin-right: 25px;
+
        margin-right: 25px;
    font-style: normal;
+
        font-style: normal;
  }
+
    }
  
  section {
+
    section {
    margin-left: 25px;
+
        margin-left: 25px;
    margin-right: 25px;
+
        margin-right: 25px;
    margin-top: 25px;
+
        margin-top: 25px;
  }
+
    }
  
  .thumb {
+
    .thumb {
    width: 100%;
+
        width: 100%;
  }
+
    }
  
  table,
+
    table,
  th,
+
    th,
  td {
+
    td {
    border: 0.5px solid black;
+
        border: 0.5px solid black;
    border-collapse: collapse;
+
        border-collapse: collapse;
    padding: 5px;
+
        padding: 5px;
  }
+
    }
  
  .thumbcaption {
+
    .thumbcaption {
    text-align: justify !important;
+
        text-align: justify !important;
  }
+
    }
  
  
  a[href ^="https://"],
+
    a[href ^="https://"],
  .link-https {
+
    .link-https {
    background: none !important;
+
        background: none !important;
    padding-right: 0px !important;
+
        padding-right: 0px !important;
  }
+
    }
 +
</style>
  
</style>
 
 
<body>
 
<body>
<!-- Part summary -->
+
    <!-- Part summary -->
<section >
+
    <section>
<h1>Oct1 binding casette 5x UAS</h1>
+
        <h1>Oct1 Binding Casette 5x UAS</h1>
<p>This part contains three times Oct1 recognition sites (BBa_K5237018) and five times an upstream activating
+
        <p>This part contains three times Oct1 recognition sites (<a
      sequence (UAS). With these two sequences available we can facilitate binding of Oct1 and Gal4, utilized in our
+
                href="https://parts.igem.org/Part:BBa_K5237018">BBa_K5237018</a>) and five times an upstream activating
      simulated enhancer hijacking using the transactivator fusion protein NLS-Gal4-VP64 (BBa_K5237014). Firefly
+
            sequence (UAS). With these two sequences available we can facilitate binding of Oct1 and Gal4, utilized in
      luciferase will be expressed through Cas staple-induced proximity of the transactivator.
+
            our
    </p>
+
            simulated enhancer hijacking using the transactivator fusion protein NLS-Gal4-VP64 (<a
<p> </p>
+
                href="https://parts.igem.org/Part:BBa_K5237014">BBa_K5237014</a>). Firefly
</section>
+
            luciferase will be expressed through Cas staple-induced proximity of the transactivator.
<div class="toc" id="toc">
+
        </p>
<div id="toctitle">
+
        <p> </p>
<h1>Contents</h1>
+
    </section>
</div>
+
    <div class="toc" id="toc">
<ul>
+
        <div id="toctitle">
<li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
+
            <h1>Contents</h1>
            overview</span></a>
+
        </div>
</li>
+
        <ul>
<li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
+
            <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span
            Biology</span></a>
+
                        class="toctext">Sequence
</li>
+
                        overview</span></a>
<li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
+
            </li>
            and part evolution</span></a>
+
            <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span
</li>
+
                        class="toctext">Usage and
<li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span class="toctext">Results</span></a>
+
                        Biology</span></a>
</li>
+
            </li>
<li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span class="toctext">References</span></a>
+
            <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span
</li>
+
                        class="toctext">Assembly
</ul>
+
                        and part evolution</span></a>
</div>
+
            </li>
<section><p><br/><br/></p>
+
            <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
<font size="5"><b>The PICasSO Toolbox </b> </font>
+
                        class="toctext">Results</span></a>
<div class="thumb" style="margin-top:10px;"></div>
+
            </li>
<div class="thumbinner" style="width:550px"><img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;"/>
+
            <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
<div class="thumbcaption">
+
                        class="toctext"><i>In Silico</i> Characterization Using DaVinci</span></a>
<i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
+
                <ul>
</div>
+
                    <li class="toclevel-2 tocsection-9"><a href="#5.1"><span class="tocnumber">5.1</span> <span
</div>
+
                                class="toctext">Enhancer Hijacking is Successfully Studied <i>In Silico</i></span></a>
<p>
+
                    </li>
<br/>
+
                    <li class="toclevel-2 tocsection-10"><a href="#5.2"><span class="tocnumber">5.2</span> <span
      While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
+
                                class="toctext">Cas Staple Forces Do Not Distrub DNA Strand Integrity</span></a></li>
        spatial organization</b> of DNA is well-known to be an important layer of information encoding in
+
                    <li class="toclevel-2 tocsection-11"><a href="#5.3"><span class="tocnumber">5.3</span> <span
      particular in eukaryotes, playing a crucial role in
+
                                class="toctext">DaVinci Helps to Design Multi-Staple Arrangements</span></a></li>
      gene regulation and hence
+
                </ul>
      cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
+
            </li>
      genomic spatial
+
            <li class="toclevel-1 tocsection-12"><a href="#6"><span class="tocnumber">6</span> <span
      architecture are limited, hampering the exploration of
+
                        class="toctext">References</span></a>
      3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
+
        </ul>
      <b>powerful
+
    </div>
        molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
+
    <section>
      various DNA-binding proteins.
+
        <p><br /><br /></p>
    </p>
+
        <font size="5"><b>The PICasSO Toolbox </b> </font>
<p>
+
        <div class="thumb" style="margin-top:10px;"></div>
      The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
+
        <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
      <b>re-programming
+
                src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
        of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables
+
                style="width:99%;" />
      researchers to recreate naturally occurring alterations of 3D genomic
+
            <div class="thumbcaption">
      interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
+
                <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
      artificial gene regulation and cell function control.
+
            </div>
      Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic
+
        </div>
      loci into
+
        <p>
      spatial proximity.
+
            <br />
      To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
+
            While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
      connected either at
+
                spatial organization</b> of DNA is well-known to be an important layer of information encoding in
      the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are
+
            particular in eukaryotes, playing a crucial role in
      referred to as protein- or Cas staples, respectively. Beyond its
+
            gene regulation and hence
      versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
+
            cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
      support the engineering, optimization, and
+
            genomic spatial
      testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a
+
            architecture are limited, hampering the exploration of
      design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational
+
            3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
        modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
+
            <b>powerful
      parts.
+
                molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
    </p>
+
            various DNA-binding proteins.
<p>At its heart, the PICasSO part collection consists of three categories. <br/><b>(i)</b> Our <b>DNA-binding
+
        </p>
        proteins</b>
+
        <p>
      include our
+
            The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
      finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
+
            <b>re-programming
      "half staples" that can be combined by scientists to compose entirely
+
                of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables
      new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
+
            researchers to recreate naturally occurring alterations of 3D genomic
      and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
+
            interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
      successful stapling
+
            artificial gene regulation and cell function control.
      and can be further engineered to create alternative, simpler, and more compact staples. <br/>
+
            Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic
<b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
+
            loci into
      functionality of our Cas and
+
            spatial proximity.
      Basic staples. These
+
            To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
      consist of staples dependent on
+
            connected either at
      cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
+
            the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes
      dynamic stapling <i>in vivo</i>.
+
            are
      We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
+
            referred to as protein- or Cas staples, respectively. Beyond its
      target cells, including mammalian cells,
+
            versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
      with our new
+
            support the engineering, optimization, and
      interkingdom conjugation system. <br/>
+
            testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a
<b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
+
            design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational
        readout
+
                modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
        systems</b>. These include components of our established FRET-based proximity assay system, enabling
+
            parts.
      users to
+
        </p>
      confirm
+
        <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding
      accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
+
                proteins</b>
      luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
+
            include our
      hijacking events
+
            finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
      in mammalian cells.
+
            "half staples" that can be combined by scientists to compose entirely
    </p>
+
            new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
<p>
+
            and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
      The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed
+
            successful stapling
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
+
            and can be further engineered to create alternative, simpler, and more compact staples. <br />
      parts in
+
            <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
      the
+
            functionality of our Cas and
      collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
+
            Basic staples. These
      their
+
            consist of staples dependent on
      own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
+
            cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
      engineering.<br/>
+
            dynamic stapling <i>in vivo</i>.
</p>
+
            We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
<p>
+
            target cells, including mammalian cells,
<font size="4"><b>Our part collection includes:</b></font><br/>
+
            with our new
</p>
+
            interkingdom conjugation system. <br />
<table style="width: 90%; padding-right:10px;">
+
            <b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
<td align="left" colspan="3"><b>DNA-Binding Proteins: </b>
+
                readout
        Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i></td>
+
                systems</b>. These include components of our established FRET-based proximity assay system, enabling
<tbody>
+
            users to
<tr bgcolor="#FFD700">
+
            confirm
<td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
+
            accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
<td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td>
+
            luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
<td>Entry vector for simple fgRNA cloning via SapI</td>
+
            hijacking events
</tr>
+
            in mammalian cells.
<tr bgcolor="#FFD700">
+
        </p>
<td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
+
        <p>
<td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td>
+
            The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
<td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
+
                style="background-color: #FFD700; color: black;">The highlighted parts showed
          </td>
+
                exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
</tr>
+
            parts in
<tr bgcolor="#FFD700">
+
            the
<td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
+
            collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
<td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
+
            their
<td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
+
            own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
          </td>
+
            engineering.<br />
</tr>
+
        </p>
<tr>
+
        <p>
<td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
+
            <font size="4"><b>Our part collection includes:</b></font><br />
<td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
        </p>
<td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into
+
        <table style="width: 90%; padding-right:10px;">
            close
+
            <td align="left" colspan="3"><b>DNA-Binding Proteins: </b>
            proximity
+
                Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in
          </td>
+
                    vivo</i></td>
</tr>
+
            <tbody>
<tr>
+
                <tr bgcolor="#FFD700">
<td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
<td>Staple Subunit: Oct1-DBD</td>
+
                    <td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td>
<td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br/>
+
                    <td>Entry vector for simple fgRNA cloning via SapI</td>
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
+
                </tr>
</tr>
+
                <tr bgcolor="#FFD700">
<tr>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
<td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
+
                    <td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td>
<td>Staple Subunit: TetR</td>
+
                    <td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
<td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br/>
+
                    </td>
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
+
                </tr>
</tr>
+
                <tr bgcolor="#FFD700">
<tr>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
<td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
+
                    <td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
<td>Simple Staple: TetR-Oct1</td>
+
                    <td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional
<td>Functional staple that can be used to bring two DNA strands in close proximity</td>
+
                        staple
</tr>
+
                    </td>
<tr>
+
                </tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
+
                <tr>
<td>Staple Subunit: GCN4</td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
                    <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
</tr>
+
                    <td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA
<tr>
+
                        strands into
<td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
+
                        close
<td>Staple Subunit: rGCN4</td>
+
                        proximity
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
                    </td>
</tr>
+
                </tr>
<tr>
+
                <tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
<td>Mini Staple: bGCN4</td>
+
                    <td>Staple Subunit: Oct1-DBD</td>
<td>
+
                    <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br />
            Assembled staple with minimal size that can be further engineered</td>
+
                        Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
</tr>
+
                </tr>
</tbody>
+
                <tr>
<td align="left" colspan="3"><b>Functional Elements: </b>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
        Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
+
                    <td>Staple Subunit: TetR</td>
        optimization
+
                    <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br />
        for custom applications</td>
+
                        Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
<tbody>
+
                </tr>
<tr bgcolor="#FFD700">
+
                <tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
<td>Cathepsin B-cleavable Linker: GFLG</td>
+
                    <td>Simple Staple: TetR-Oct1</td>
<td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
+
                    <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
            responsive
+
                </tr>
            staples</td>
+
                <tr>
</tr>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
<tr>
+
                    <td>Staple Subunit: GCN4</td>
<td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
+
                    <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
<td>Cathepsin B Expression Cassette</td>
+
                </tr>
<td>Expression cassette for the overexpression of cathepsin B</td>
+
                <tr>
</tr>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
<tr>
+
                    <td>Staple Subunit: rGCN4</td>
<td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
+
                    <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
<td>Caged NpuN Intein</td>
+
                </tr>
<td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
+
                <tr>
            activation, which can be used to create functionalized staple
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
            subunits</td>
+
                    <td>Mini Staple: bGCN4</td>
</tr>
+
                    <td>
<tr>
+
                        Assembled staple with minimal size that can be further engineered</td>
<td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
+
                </tr>
<td>Caged NpuC Intein</td>
+
            </tbody>
<td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
+
            <td align="left" colspan="3"><b>Functional Elements: </b>
            activation, which can be used to create functionalized staple
+
                Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
            subunits</td>
+
                optimization
</tr>
+
                for custom applications</td>
<tr>
+
            <tbody>
<td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
+
                <tr bgcolor="#FFD700">
<td>Fusion Guide RNA Processing Casette</td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
<td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for
+
                    <td>Cathepsin B-cleavable Linker: GFLG</td>
            multiplexed 3D
+
                    <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
            genome reprogramming</td>
+
                        responsive
</tr>
+
                        staples</td>
<tr>
+
                </tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
+
                <tr>
<td>Intimin anti-EGFR Nanobody</td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
<td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for
+
                    <td>Cathepsin B Expression Cassette</td>
            large
+
                    <td>Expression cassette for the overexpression of cathepsin B</td>
            constructs</td>
+
                </tr>
</tr>
+
                <tr>
<tr>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
<td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
+
                    <td>Caged NpuN Intein</td>
<td>IncP Origin of Transfer</td>
+
                    <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
<td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
+
                        activation, which can be used to create functionalized staple
            means of
+
                        subunits</td>
            delivery</td>
+
                </tr>
</tr>
+
                <tr>
</tbody>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
<td align="left" colspan="3"><b>Readout Systems: </b>
+
                    <td>Caged NpuC Intein</td>
        FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
+
                    <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
        mammalian cells
+
                        activation, which can be used to create functionalized staple
      </td>
+
                        subunits</td>
<tbody>
+
                </tr>
<tr bgcolor="#FFD700">
+
                <tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
<td>FRET-Donor: mNeonGreen-Oct1</td>
+
                    <td>Fusion Guide RNA Processing Casette</td>
<td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to
+
                    <td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for
            visualize
+
                        multiplexed 3D
            DNA-DNA
+
                        genome reprogramming</td>
            proximity</td>
+
                </tr>
</tr>
+
                <tr>
<tr bgcolor="#FFD700">
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
<td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
+
                    <td>Intimin anti-EGFR Nanobody</td>
<td>FRET-Acceptor: TetR-mScarlet-I</td>
+
                    <td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool
<td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize
+
                        for
            DNA-DNA
+
                        large
            proximity</td>
+
                        constructs</td>
</tr>
+
                </tr>
<tr>
+
                <tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
<td>Oct1 Binding Casette</td>
+
                    <td>IncP Origin of Transfer</td>
<td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
+
                    <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
            proximity assay</td>
+
                        means of
</tr>
+
                        delivery</td>
<tr>
+
                </tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
+
            </tbody>
<td>TetR Binding Cassette</td>
+
            <td align="left" colspan="3"><b>Readout Systems: </b>
<td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
+
                FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
            FRET
+
                mammalian cells
            proximity assay</td>
+
            </td>
</tr>
+
            <tbody>
<td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
+
                <tr bgcolor="#FFD700">
<td>Cathepsin B-Cleavable <i>Trans</i>-Activator: NLS-Gal4-GFLG-VP64</td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
<td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
+
                    <td>FRET-Donor: mNeonGreen-Oct1</td>
        </td>
+
                    <td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be
<tr>
+
                        used to
<td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
+
                        visualize
<td>NLS-Gal4-VP64</td>
+
                        DNA-DNA
<td><i>Trans</i>-activating enhancer, that can be used to simulate enhancer hijacking</td>
+
                        proximity</td>
</tr>
+
                </tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
+
                <tr bgcolor="#FFD700">
<td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
<td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td>
+
                    <td>FRET-Acceptor: TetR-mScarlet-I</td>
<tr>
+
                    <td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to
<td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
+
                        visualize
<td>Oct1 - 5x UAS Binding Casette</td>
+
                        DNA-DNA
<td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
+
                        proximity</td>
</tr>
+
                </tr>
<tr>
+
                <tr>
<td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
<td>TRE-minimal Promoter- Firefly Luciferase</td>
+
                    <td>Oct1 Binding Casette</td>
<td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence
+
                    <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
            readout for
+
                        proximity assay</td>
            simulated enhancer hijacking</td>
+
                </tr>
</tr>
+
                <tr>
</tbody>
+
                    <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
</table></section>
+
                    <td>TetR Binding Cassette</td>
<section id="1">
+
                    <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
<h1>1. Sequence overview</h1>
+
                        FRET
</section>
+
                        proximity assay</td>
 +
                </tr>
 +
                <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 +
                <td>Cathepsin B-Cleavable <i>Trans</i>-Activator: NLS-Gal4-GFLG-VP64</td>
 +
                <td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable
 +
                    linker
 +
                </td>
 +
                <tr>
 +
                    <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 +
                    <td>NLS-Gal4-VP64</td>
 +
                    <td><i>Trans</i>-activating enhancer, that can be used to simulate enhancer hijacking</td>
 +
                </tr>
 +
                <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 +
                <td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td>
 +
                <td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td>
 +
                <tr>
 +
                    <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 +
                    <td>Oct1 - 5x UAS Binding Casette</td>
 +
                    <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 +
                </tr>
 +
                <tr>
 +
                    <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
 +
                    <td>TRE-minimal Promoter- Firefly Luciferase</td>
 +
                    <td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence
 +
                        readout for
 +
                        simulated enhancer hijacking</td>
 +
                </tr>
 +
            </tbody>
 +
        </table>
 +
    </section>
 +
    <section id="1">
 +
        <h1>1. Sequence overview</h1>
 +
    </section>
 
</body>
 
</body>
 +
 
</html>
 
</html>
 
<!--################################-->
 
<!--################################-->
Line 341: Line 374:
 
<html>
 
<html>
 
<section id="2">
 
<section id="2">
<h1>2. Usage and Biology</h1>
+
    <h1>2. Usage and Biology</h1>
<p>
+
    <p>
    Gal4 is a well-known transcription factor from <i>Saccharomyces cerevisiae</i> that binds specifically to UAS regions on
+
        Gal4 is a well-known transcription factor from <i>Saccharomyces cerevisiae</i> that binds specifically to UAS
    DNA, activating transcription of downstream genes. Its DNA-binding domain has been widely utilized in synthetic
+
        regions on
    biology and gene regulation studies due to its specificity and ability to recruit transcriptional machinery
+
        DNA, activating transcription of downstream genes. Its DNA-binding domain has been widely utilized in synthetic
    (Kakidani & Ptashne, 1988).<br/>
+
        biology and gene regulation studies due to its specificity and ability to recruit transcriptional machinery
    Oct-1 is a key transcription factor that regulates the transcription of the histone H2B gene and various
+
        (Kakidani & Ptashne, 1988).<br />
    housekeeping genes involved in the cell cycle. As cells transition into mitosis, Oct-1 undergoes
+
        Oct-1 is a key transcription factor that regulates the transcription of the histone H2B gene and various
    hyperphosphorylation, a modification that is reversed when cells exit mitosis. Research shows that a specific
+
        housekeeping genes involved in the cell cycle. As cells transition into mitosis, Oct-1 undergoes
    phosphorylation site within the homeodomain of Oct-1 is targeted by protein kinase A in vitro. This mitosis-specific
+
        hyperphosphorylation, a modification that is reversed when cells exit mitosis. Research shows that a specific
    phosphorylation is linked to a reduction in Oct-1's DNA-binding ability, both in vivo and in vitro, suggesting that
+
        phosphorylation site within the homeodomain of Oct-1 is targeted by protein kinase A in vitro. This
    phosphorylation of Oct-1 may contribute to the overall inhibition of transcription that occurs during mitosis (
+
        mitosis-specific
    Segil <i>et al.</i>, 1991).<br/>
+
        phosphorylation is linked to a reduction in Oct-1's DNA-binding ability, both in vivo and in vitro, suggesting
    We utilize these two recognition sites for plasmid-to-plasmid stapling with our Cas staples. A fgRNA targeting Oct1
+
        that
    and Tre on the other plasmid, is the key factor in the Cas staple, bringing them together. When the transactivator,
+
        phosphorylation of Oct-1 may contribute to the overall inhibition of transcription that occurs during mitosis (
    Gal4-VP64, binds as well we have transactivation as a readout for functioning staples.
+
        Segil <i>et al.</i>, 1991).<br />
 +
        We utilize these two recognition sites for plasmid-to-plasmid stapling with our Cas staples. A fgRNA targeting
 +
        Oct1
 +
        and Tre on the other plasmid, is the key factor in the Cas staple, bringing them together. When the
 +
        transactivator,
 +
        Gal4-VP64, binds as well we have transactivation as a readout for functioning staples.
  
  </p>
+
    </p>
 
</section>
 
</section>
 
<section id="3">
 
<section id="3">
<h1>3. Assembly and Part Evolution</h1>
+
    <h1>3. Assembly and Part Evolution</h1>
<p>
+
    <p>
    The cloning strategy designed for Oct1 allows for the easy assembly of repetitive repeats. It follows the procedure
+
        The cloning strategy designed for Oct1 allows for the easy assembly of repetitive repeats. It follows the
    outlined by Sladitschek and Neveu (2015). Briefly, the oligos can be inserted into a vector digested with SalI and
+
        procedure
    XhoI,
+
        outlined by Sladitschek and Neveu (2015). Briefly, the oligos can be inserted into a vector digested with SalI
    yielding a vector with three binding repeats flanked by these restriction sites. The vector can be linearized with
+
        and
    either SalI or XhoI, as both enzymes create compatible overhangs. The annealed oligos can then be ligated into the
+
        XhoI,
    vector, resulting in six binding repeats, with the middle sequence losing its cleavage site compatibility. This
+
        yielding a vector with three binding repeats flanked by these restriction sites. The vector can be linearized
    process
+
        with
    can be repeated to achieve the desired number of repeats by digesting the vector and re-ligating the oligos. For the
+
        either SalI or XhoI, as both enzymes create compatible overhangs. The annealed oligos can then be ligated into
    experiments conducted, a folding plasmid with 12 repeats was created. Since the registry has some limitations
+
        the
    regarding
+
        vector, resulting in six binding repeats, with the middle sequence losing its cleavage site compatibility. This
    sequence depository, the binding cassette is flanked by SalI and XhoI, and the top and bottom oligos with the
+
        process
    fitting
+
        can be repeated to achieve the desired number of repeats by digesting the vector and re-ligating the oligos. For
    overhangs are annotated.
+
        the
  </p>
+
        experiments conducted, a folding plasmid with 12 repeats was created. Since the registry has some limitations
 +
        regarding
 +
        sequence depository, the binding cassette is flanked by SalI and XhoI, and the top and bottom oligos with the
 +
        fitting
 +
        overhangs are annotated.
 +
    </p>
 
</section>
 
</section>
 
<section id="4">
 
<section id="4">
<h1>4. Results</h1>
+
    <h1>4. Results</h1>
<p>
+
    <p>
    We were able to show our enhancer plasmid to work great with the Cas staples and the reporter plasmid. For the whole
+
        We were able to show our enhancer plasmid to work great with the Cas staples and the reporter plasmid. For the
    assay, the enhancer plasmid and a reporter plasmid were used. The reporter plasmid has firefly luciferase behind
+
        whole
    several repeats of a Cas9 targeted sequence. The enhancer plasmid has the Oct1 being targeted by Cas12a. By
+
        assay, the enhancer plasmid and a reporter plasmid were used. The reporter plasmid has firefly luciferase behind
    introducing a fgRNA staple (<a href="https://parts.igem.org/Part:BBa_K5237000">BBa_K5237000</a>) and a Gal4-VP64 (<a href="https://parts.igem.org/Part:BBa_K5237021">BBa_K5237021</a>), expression of the luciferase is induced.<br/>
+
        several repeats of a Cas9 targeted sequence. The enhancer plasmid has the Oct1 being targeted by Cas12a. By
    Cells were again normalized against ubiquitous renilla expression.
+
        introducing a fgRNA staple (<a href="https://parts.igem.org/Part:BBa_K5237000">BBa_K5237000</a>) and a Gal4-VP64
    Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (Fig. 2B). An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher
+
        (<a href="https://parts.igem.org/Part:BBa_K5237021">BBa_K5237021</a>), expression of the luciferase is
    expression of the reporter gene. These results suggest an extension of the linker might lead to better
+
        induced.<br />
    transactivation when hijacking an enhancer/activator.
+
        Cells were again normalized against ubiquitous renilla expression.
 +
        Using no linker between the two spacers showed similar relative luciferase activity to the baseline control
 +
        (Fig. 2B). An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher
 +
        expression of the reporter gene. These results suggest an extension of the linker might lead to better
 +
        transactivation when hijacking an enhancer/activator.
 
     <div class="thumb">
 
     <div class="thumb">
<div class="thumbinner" style="width:60%;">
+
        <div class="thumbinner" style="width:60%;">
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-eh-2.svg" style="width:99%;"/>
+
            <img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-eh-2.svg"
<div class="thumbcaption">
+
                style="width:99%;" />
<i>
+
            <div class="thumbcaption">
<b>Figure 2: Applying Fusion Guide RNAs for Cas staples.</b> <b>A</b>, schematic overview of the assay.
+
                <i>
            An enhancer
+
                    <b>Figure 2: Applying Fusion Guide RNAs for Cas staples.</b> <b>A</b>, schematic overview of the
            plasmid and a reporter plasmid are brought into proximity by an fgRNA Cas staple complex binding both
+
                    assay.
            plasmids. Target
+
                    An enhancer
            sequences were included in multiple repeats prior to the functional elements. Firefly luciferase serves as
+
                    plasmid and a reporter plasmid are brought into proximity by an fgRNA Cas staple complex binding
            the reporter
+
                    both
            gene, the enhancer is constituted by multiple Gal4 repeats that are bound by a Gal4-VP64 fusion.
+
                    plasmids. Target
            <b>B</b>, results of using a fgRNA Cas staple for trans activation of firefly luciferase. Firefly
+
                    sequences were included in multiple repeats prior to the functional elements. Firefly luciferase
            luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed Renilla
+
                    serves as
            luciferase.
+
                    the reporter
            Statistical significance was calculated with ordinary One-way ANOVA with Dunn's method for multiple
+
                    gene, the enhancer is constituted by multiple Gal4 repeats that are bound by a Gal4-VP64 fusion.
            comparisons (*p &lt;
+
                    <b>B</b>, results of using a fgRNA Cas staple for trans activation of firefly luciferase. Firefly
            0.05; **p &lt; 0.01; ***p &lt; 0.001; mean +/- SD). The assay included sgRNAs and fgRNAs with linker
+
                    luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed
            lengths from 0 nt
+
                    Renilla
            to 40 nt.
+
                    luciferase.
          </i>
+
                    Statistical significance was calculated with ordinary One-way ANOVA with Dunn's method for multiple
</div>
+
                    comparisons (*p &lt;
</div>
+
                    0.05; **p &lt; 0.01; ***p &lt; 0.001; mean +/- SD). The assay included sgRNAs and fgRNAs with linker
</div>
+
                    lengths from 0 nt
</p>
+
                    to 40 nt.
 +
                </i>
 +
            </div>
 +
        </div>
 +
    </div>
 +
    </p>
 
</section>
 
</section>
 
<section id="5">
 
<section id="5">
<h1>5. References</h1>
+
    <h1>5. <i>In Silico</i> Characterization Using DaVinci</h1>
<p>Kakidani, H., &amp; Ptashne, M. (1988). GAL4 activates gene expression in mammalian cells. <i>Cell</i>, <b>52</b>, 161-167. <a href="https://doi.org/10.1016/0092-8674(88)90504-1" target="_blank">https://doi.org/10.1016/0092-8674(88)90504-1</a>.</p>
+
    <p>
<p>Segil, N., Roberts, S., &amp; Heintz, N. (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. <i>Science</i>, <b>254</b>(5039), 1814-1816. <a href="https://doi.org/10.1126/SCIENCE.1684878" target="_blank">https://doi.org/10.1126/SCIENCE.1684878</a>.</p>
+
        We developed the <i>in silico</i> model <a href="https://2024.igem.wiki/heidelberg/model"
<p>Sladitschek, H. L., &amp; Neveu, P. A. (2015). MXS-Chaining: a highly efficient cloning platform for imaging and flow cytometry approaches in mammalian systems. <i>PLoS ONE</i>, <b>10</b>(4), e0124958. <a href="https://doi.org/10.1371/journal.pone.0124958" target="_blank">https://doi.org/10.1371/journal.pone.0124958</a>.</p>
+
            target="_blank">DaVinci</a> for rapid engineering and development of our PiCasSO
 +
        system. DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our
 +
        system, refine experimental parameters, and find optimal connections between protein staples and
 +
        target DNA.<br>
 +
        We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA
 +
        assays and purified proteins. This enabled us to simulate enhancer hijacking <i>in silico</i>, providing
 +
        valuable input for the design of further experiments. Additionally, we apply the same approach to
 +
        our part collection. <br><br>
 +
        DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and
 +
        long-ranged dna dynamics simulation. Here, we applied the last step to our parts, characterizing
 +
        structure and dynamics of the dna-binding interaction.
 +
    </p>
 +
    <section id="5.1">
 +
        <h2>5.1. Enhancer Hijacking is Successfully Studied <i>In Silico</i></h2>
 +
        <div class="thumb tright" style="margin:0;">
 +
            <div class="thumbinner" style="width:300px;">
 +
                <img src="https://static.igem.wiki/teams/5237/figures-corrected/drylab-plasmids-cas-staple-fgrna.svg"
 +
                    class="thumbimage" style="width:99%;">
 +
                <div class="thumbcaption">
 +
                    <i>
 +
                        <b>Figure 11: Cas stapled plasmids.</b>
 +
                    </i>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <p>
 +
            With the Cas staple, we aimed to simulate the principles of enhancer hijacking
 +
            experiments we
 +
            conducted in the lab. For these experiments, we modeled the two plasmids also used in
 +
            the wet lab
 +
            (<a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a> and
 +
            <a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a>). On
 +
            top of the
 +
            two plasmids, we modeled the Cas staple by applying a “DNA-DNA tethering force"
 +
            throughout our
 +
            simulation, selectively on the regions targeted by the fgRNA. This force was based on
 +
            simulation
 +
            data acquired in earlier phases of DaVinci. As there is no suitable model available that
 +
            also
 +
            simulates proteins, this proved to be the most effective modeling strategy.
 +
        </p>
 +
 
 +
        <p>
 +
            Our simulation showed the expected behavior, holding the target sequences of the Cas
 +
            staple (Fig. 12).
 +
            Overall, these exciting results demonstrate that we can successfully model the core
 +
            principles of
 +
            enhancer hijacking with a total of 20 thousand simulated nucleotides <i>in silico</i>.
 +
        </p>
 +
 
 +
        <div class="thumb" style="width:50%;">
 +
            <div class="thumbinner" style="position:center; padding-bottom:56.25%; height:257px;">
 +
                <iframe title="Heidelberg: predicted_fgRNA_long_slow (2024)"
 +
                    src="https://video.igem.org/videos/embed/db213b54-039e-42ca-aa29-c70614172e49?title=0&amp;warningTitle=0"
 +
                    frameborder="0" allowfullscreen=""
 +
                    sandbox="allow-same-origin allow-scripts allow-popups allow-forms" style="width:100%; height:100%;"
 +
                    class="thumbimage">
 +
                </iframe>
 +
            </div>
 +
            <div class="thumbcaption">
 +
                <i>
 +
                    <b>Figure 12: Fusion Cas staples hold stapled nucleotides in close proximity.</b>
 +
                </i>
 +
            </div>
 +
        </div>
 +
    </section>
 +
 
 +
    <section id="5.2">
 +
        <h2>5.2. Cas Staple Forces Do Not Distrub DNA Strand Integrity</h2>
 +
        <div class="thumb tright">
 +
            <div class="thumbinner" style="width:300px;">
 +
                <img src="https://static.igem.wiki/teams/5237/figures-corrected/drylab-plasmids-cas-staple-fgrna.svg"
 +
                    class="thumbimage" style="width:99%;">
 +
                <div class="thumbcaption">
 +
                    <i>
 +
                        <b>Figure 13: Cas stapled plasmids.</b>
 +
                    </i>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <p>
 +
            Next, we aimed to stress test our system to determine the amount of force required to induce DNA
 +
            double-strand breaks. To achieve this, we used an identical setup to the previous experiment but
 +
            instead of
 +
            experimentally determined forces, we used artificial forces of varying strength.
 +
            It is important to know that our <i>in silico</i> model responds to forces that cause double-strand
 +
            breaks by
 +
            scattering the nucleotides across the simulation box. As the specified bonds cannot actually
 +
            break within
 +
            the simulation, the phosphate backbone bonds become severely distorted and exhibit erratic
 +
            behavior in the
 +
            simulation videos. From our extensive simulations, we concluded that the forces required to damage the DNA
 +
            are approximately 320 times (Fig. 15) and 680 times greater (Fig. 16) than the forces exerted by the Cas
 +
            staple, respectively.
 +
            <br><br>
 +
            This provides important evidence regarding
 +
            the safety of
 +
            our staple approach for 3D genome engineering: According to our model, DNA-DNA tethering with
 +
            our Cas
 +
            staples is not expected to have a negative effect on the DNA stability.
 +
        </p>
 +
 
 +
 
 +
        <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 10px; overflow: auto;">
 +
            <!-- First Video -->
 +
            <div class="thumb">
 +
                <div class="thumbinner">
 +
                    <iframe title="Heidelberg: fgRNA_neg_272x_slow (2024)"
 +
                        src="https://video.igem.org/videos/embed/7ea11707-ace8-44b0-9b6a-6e623474bc0a?title=0&warningTitle=0"
 +
                        allowfullscreen="" sandbox="allow-same-origin allow-scripts allow-popups allow-forms"
 +
                        style="width: 100%; aspect-ratio: 16/9;"></iframe>
 +
                </div>
 +
                <div class="thumbcaption">
 +
                    <i><b>Figure 14: Applying a force that is 270 times greater <br> than the predicted force typically
 +
                            exerted by a Cas staple on DNA.</b></i>
 +
                </div>
 +
            </div>
 +
 
 +
            <!-- Second Video -->
 +
            <div class="thumb">
 +
                <div class="thumbinner">
 +
                    <iframe title="Heidelberg: fgRNA_neg_318x_slow (2024)"
 +
                        src="https://video.igem.org/videos/embed/66db402a-c94a-4aad-b30b-386b8ccc20b0?title=0&warningTitle=0"
 +
                        allowfullscreen="" sandbox="allow-same-origin allow-scripts allow-popups allow-forms"
 +
                        style="width: 100%; aspect-ratio: 16/9;"></iframe>
 +
                </div>
 +
                <div class="thumbcaption">
 +
                    <i><b>Figure 15: Applying a force that is 320 times greater <br> than the predicted force typically
 +
                            exerted by a Cas staple on DNA.</b></i>
 +
                </div>
 +
            </div>
 +
 
 +
            <!-- Third Video -->
 +
            <div class="thumb">
 +
                <div class="thumbinner">
 +
                    <iframe title="Heidelberg: fgRNA_neg_681x_slow (2024)"
 +
                        src="https://video.igem.org/videos/embed/5e6240ab-1057-4db6-a992-22a17d2fcc55?title=0&warningTitle=0"
 +
                        allowfullscreen="" sandbox="allow-same-origin allow-scripts allow-popups allow-forms"
 +
                        style="width: 100%; aspect-ratio: 16/9;"></iframe>
 +
                </div>
 +
                <div class="thumbcaption">
 +
                    <i><b>Figure 16: Applying a force that is 680 times greater <br> than the predicted force typically
 +
                            exerted by a Cas staple on DNA.</b></i>
 +
                </div>
 +
            </div>
 +
 
 +
            <!-- Fourth Video -->
 +
            <div class="thumb">
 +
                <div class="thumbinner">
 +
                    <iframe title="Heidelberg: fgRNA_neg_1000x_slow (2024)"
 +
                        src="https://video.igem.org/videos/embed/26f9ba1c-51b9-4931-b1d3-8129ff3a57a7?title=0&warningTitle=0"
 +
                        allowfullscreen="" sandbox="allow-same-origin allow-scripts allow-popups allow-forms"
 +
                        style="width: 100%; aspect-ratio: 16/9;"></iframe>
 +
                </div>
 +
                <div class="thumbcaption">
 +
                    <i><b>Figure 17: Applying a force that is more than 1000 times greater <br> than the predicted force
 +
                            typically exerted by a Cas staple on DNA.</b></i>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </section>
 +
 
 +
    <section id="5.3">
 +
        <h2>5.3. DaVinci Helps to Design Multi-Staple Arrangements</h2>
 +
 
 +
        <div class="thumb tright">
 +
            <div class="thumbinner" style="width:300px;">
 +
                <img src="https://static.igem.wiki/teams/5237/figures-corrected/drylab-plasmids-multiplexing-broken-cas-staple-fgrna-correct.svg"
 +
                    class="thumbimage" style="width:99%;">
 +
                <div class="thumbcaption">
 +
                    <i>
 +
                        <b>Figure 18: Double Cas stapling within 40 nucleotide distance induces
 +
                            double-strand
 +
                            breaks.</b>
 +
                    </i>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <p>
 +
            Finally, we simulated the behavior of multiple staples at once. Therefore, we expanded our
 +
            previously
 +
            introduced experimental setup by a second Cas staple.<br>
 +
            In a first approach, we targeted an additional region next to the original chosen one. This
 +
            region is 40
 +
            nucleotides away from the first target region on the plasmid displayed in blue connecting it to
 +
            the opposite
 +
            site of the orange plasmid, therefore bringing both ends of the orange plasmid together (Fig. 18).<br>
 +
            Our simulation predicted that with these staple points, DNA double-strand breaks would occur as clearly
 +
            visible by the scattered nucleotides (Fig. 19).
 +
        </p>
 +
 
 +
 
 +
 
 +
 
 +
        <div class="thumb" style="width:50%;">
 +
            <div class="thumbinner" style="position:center; padding-bottom:56.25%; height:257px;">
 +
                <iframe title="Heidelberg: multiplex_pos_40nt_slow (2024)"
 +
                    src="https://video.igem.org/videos/embed/2d153686-202b-414f-9abd-20835110953c?title=0&amp;warningTitle=0"
 +
                    frameborder="0" allowfullscreen=""
 +
                    sandbox="allow-same-origin allow-scripts allow-popups allow-forms" style="width:100%; height:100%;"
 +
                    class="thumbimage">
 +
                </iframe>
 +
            </div>
 +
            <div class="thumbcaption">
 +
                <i>
 +
                    <b>Figure 19: Double Cas stapling within 40 nucleotide distance induces
 +
                        double-strand
 +
                        breaks.</b>
 +
                </i>
 +
            </div>
 +
        </div>
 +
 
 +
 
 +
        <div class="thumb tright">
 +
            <div class="thumbinner" style="width:300px;">
 +
                <img src="https://static.igem.wiki/teams/5237/figures-corrected/drylab-plasmids-multiplexing-notbroken-cas-staple-fgrna-correct2.svg"
 +
                    class="thumbimage" style="width:99%;">
 +
                <div class="thumbcaption">
 +
                    <i>
 +
                        <b>Figure 20: Stable multiplexing with 2 Cas staples.</b> On the blue plasmid, the
 +
                        Cas binding
 +
                        sequences are 980 nucleotides apart.</b>
 +
                    </i>
 +
                </div>
 +
            </div>
 +
        </div>
 +
 
 +
        <p>
 +
            To simulate a setup where we expect no double-strand breaks, we increased the distance between
 +
            the stapling
 +
            sites on the blue plasmid (<a href="https://parts.igem.org/Part:BBa_K5237023"
 +
                target="_blank">BBa_K5237023</a>) from 40 to 980 nucleotides (Fig. 20).<br>
 +
            With this increased distance between stapling sites, we observed a stabilized system. Most
 +
            interestingly,
 +
            the non-stapled regions showed maximum distances close to 500 nm, indicating that the two
 +
            staples led to
 +
            more compact plasmid structures.
 +
            <br><br>
 +
            In conclusion, we show that applying multiple staples on the same structures can lead to
 +
            double-strand
 +
            breaks if the staples are positioned closely to one another. However, increasing the separation
 +
            of staples
 +
            leads to a stable system without DNA damage. Thus, it is definitely possible to multiplex Cas
 +
            staples,
 +
            thereby increasing the compactness of DNA structures (Fig. 21). This shows the potential of creating
 +
            complex
 +
            regulatory networks by bringing genetic elements into spatial proximity with a multitude of Cas
 +
            protein
 +
            staples.
 +
        </p>
 +
 
 +
 
 +
        <div class="thumb" style="width:50%;">
 +
            <div class="thumbinner" style="position:center; padding-bottom:56.25%; height:257px;">
 +
                <iframe title="Heidelberg: multiplex_pos_980nt_slow (2024)"
 +
                    src="https://video.igem.org/videos/embed/777bd304-e6a0-4457-9f57-29637b7b5436?title=0&amp;warningTitle=0"
 +
                    frameborder="0" allowfullscreen=""
 +
                    sandbox="allow-same-origin allow-scripts allow-popups allow-forms" style="width:100%; height:100%;"
 +
                    class="thumbimage">
 +
                </iframe>
 +
            </div>
 +
            <div class="thumbcaption">
 +
                <i>
 +
                    <b>Figure 21: Increasing the distance between Cas staple targets to 980 nucleotides
 +
                        stabilizes
 +
                        multiplexing.</b>
 +
                </i>
 +
            </div>
 +
        </div>
 +
    </section>
 
</section>
 
</section>
 +
</section>
 +
<section id="6">
 +
    <h1>6. References</h1>
 +
    <p>Kakidani, H., &amp; Ptashne, M. (1988). GAL4 activates gene expression in mammalian cells. <i>Cell</i>,
 +
        <b>52</b>, 161-167. <a href="https://doi.org/10.1016/0092-8674(88)90504-1"
 +
            target="_blank">https://doi.org/10.1016/0092-8674(88)90504-1</a>.
 +
    </p>
 +
    <p>Segil, N., Roberts, S., &amp; Heintz, N. (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation
 +
        of Oct-1 DNA binding activity. <i>Science</i>, <b>254</b>(5039), 1814-1816. <a
 +
            href="https://doi.org/10.1126/SCIENCE.1684878" target="_blank">https://doi.org/10.1126/SCIENCE.1684878</a>.
 +
    </p>
 +
    <p>Sladitschek, H. L., &amp; Neveu, P. A. (2015). MXS-Chaining: a highly efficient cloning platform for imaging and
 +
        flow cytometry approaches in mammalian systems. <i>PLoS ONE</i>, <b>10</b>(4), e0124958. <a
 +
            href="https://doi.org/10.1371/journal.pone.0124958"
 +
            target="_blank">https://doi.org/10.1371/journal.pone.0124958</a>.</p>
 +
</section>
 +
 
</html>
 
</html>

Latest revision as of 12:58, 2 October 2024

BBa_K5237023

Oct1 Binding Casette 5x UAS

This part contains three times Oct1 recognition sites (BBa_K5237018) and five times an upstream activating sequence (UAS). With these two sequences available we can facilitate binding of Oct1 and Gal4, utilized in our simulated enhancer hijacking using the transactivator fusion protein NLS-Gal4-VP64 (BBa_K5237014). Firefly luciferase will be expressed through Cas staple-induced proximity of the transactivator.



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D spatial organization of DNA is well-known to be an important layer of information encoding in particular in eukaryotes, playing a crucial role in gene regulation and hence cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the genomic spatial architecture are limited, hampering the exploration of 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox for rationally engineering genome 3D architectures in living cells, based on various DNA-binding proteins.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as "half staples" that can be combined by scientists to compose entirely new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for successful stapling and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the functionality of our Cas and Basic staples. These consist of staples dependent on cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, dynamic stapling in vivo. We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into target cells, including mammalian cells, with our new interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a luciferase reporter, which allows for straightforward experimental assessment of functional enhancer hijacking events in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome engineering.

Our part collection includes:

DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo
BBa_K5237000 Fusion Guide RNA Entry Vector MbCas12a-SpCas9 Entry vector for simple fgRNA cloning via SapI
BBa_K5237001 Staple Subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
BBa_K5237002 Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple Subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple Subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple Staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple Subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple Subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini Staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237014 Fusion Guide RNA Processing Casette Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs
BBa_K4643003 IncP Origin of Transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promoter, mCherry Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS Binding Casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal Promoter- Firefly Luciferase Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal XbaI site found at 103
    Illegal SpeI site found at 144
    Illegal SpeI site found at 175
    Illegal SpeI site found at 206
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal SpeI site found at 144
    Illegal SpeI site found at 175
    Illegal SpeI site found at 206
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 215
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal XbaI site found at 103
    Illegal SpeI site found at 144
    Illegal SpeI site found at 175
    Illegal SpeI site found at 206
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal XbaI site found at 103
    Illegal SpeI site found at 144
    Illegal SpeI site found at 175
    Illegal SpeI site found at 206
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

Gal4 is a well-known transcription factor from Saccharomyces cerevisiae that binds specifically to UAS regions on DNA, activating transcription of downstream genes. Its DNA-binding domain has been widely utilized in synthetic biology and gene regulation studies due to its specificity and ability to recruit transcriptional machinery (Kakidani & Ptashne, 1988).
Oct-1 is a key transcription factor that regulates the transcription of the histone H2B gene and various housekeeping genes involved in the cell cycle. As cells transition into mitosis, Oct-1 undergoes hyperphosphorylation, a modification that is reversed when cells exit mitosis. Research shows that a specific phosphorylation site within the homeodomain of Oct-1 is targeted by protein kinase A in vitro. This mitosis-specific phosphorylation is linked to a reduction in Oct-1's DNA-binding ability, both in vivo and in vitro, suggesting that phosphorylation of Oct-1 may contribute to the overall inhibition of transcription that occurs during mitosis ( Segil et al., 1991).
We utilize these two recognition sites for plasmid-to-plasmid stapling with our Cas staples. A fgRNA targeting Oct1 and Tre on the other plasmid, is the key factor in the Cas staple, bringing them together. When the transactivator, Gal4-VP64, binds as well we have transactivation as a readout for functioning staples.

3. Assembly and Part Evolution

The cloning strategy designed for Oct1 allows for the easy assembly of repetitive repeats. It follows the procedure outlined by Sladitschek and Neveu (2015). Briefly, the oligos can be inserted into a vector digested with SalI and XhoI, yielding a vector with three binding repeats flanked by these restriction sites. The vector can be linearized with either SalI or XhoI, as both enzymes create compatible overhangs. The annealed oligos can then be ligated into the vector, resulting in six binding repeats, with the middle sequence losing its cleavage site compatibility. This process can be repeated to achieve the desired number of repeats by digesting the vector and re-ligating the oligos. For the experiments conducted, a folding plasmid with 12 repeats was created. Since the registry has some limitations regarding sequence depository, the binding cassette is flanked by SalI and XhoI, and the top and bottom oligos with the fitting overhangs are annotated.

4. Results

We were able to show our enhancer plasmid to work great with the Cas staples and the reporter plasmid. For the whole assay, the enhancer plasmid and a reporter plasmid were used. The reporter plasmid has firefly luciferase behind several repeats of a Cas9 targeted sequence. The enhancer plasmid has the Oct1 being targeted by Cas12a. By introducing a fgRNA staple (BBa_K5237000) and a Gal4-VP64 (BBa_K5237021), expression of the luciferase is induced.
Cells were again normalized against ubiquitous renilla expression. Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (Fig. 2B). An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher expression of the reporter gene. These results suggest an extension of the linker might lead to better transactivation when hijacking an enhancer/activator.

Figure 2: Applying Fusion Guide RNAs for Cas staples. A, schematic overview of the assay. An enhancer plasmid and a reporter plasmid are brought into proximity by an fgRNA Cas staple complex binding both plasmids. Target sequences were included in multiple repeats prior to the functional elements. Firefly luciferase serves as the reporter gene, the enhancer is constituted by multiple Gal4 repeats that are bound by a Gal4-VP64 fusion. B, results of using a fgRNA Cas staple for trans activation of firefly luciferase. Firefly luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed Renilla luciferase. Statistical significance was calculated with ordinary One-way ANOVA with Dunn's method for multiple comparisons (*p < 0.05; **p < 0.01; ***p < 0.001; mean +/- SD). The assay included sgRNAs and fgRNAs with linker lengths from 0 nt to 40 nt.

5. In Silico Characterization Using DaVinci

We developed the in silico model DaVinci for rapid engineering and development of our PiCasSO system. DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA.
We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and purified proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of further experiments. Additionally, we apply the same approach to our part collection.

DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged dna dynamics simulation. Here, we applied the last step to our parts, characterizing structure and dynamics of the dna-binding interaction.

5.1. Enhancer Hijacking is Successfully Studied In Silico

Figure 11: Cas stapled plasmids.

With the Cas staple, we aimed to simulate the principles of enhancer hijacking experiments we conducted in the lab. For these experiments, we modeled the two plasmids also used in the wet lab (BBa_K5237023 and BBa_K5237024). On top of the two plasmids, we modeled the Cas staple by applying a “DNA-DNA tethering force" throughout our simulation, selectively on the regions targeted by the fgRNA. This force was based on simulation data acquired in earlier phases of DaVinci. As there is no suitable model available that also simulates proteins, this proved to be the most effective modeling strategy.

Our simulation showed the expected behavior, holding the target sequences of the Cas staple (Fig. 12). Overall, these exciting results demonstrate that we can successfully model the core principles of enhancer hijacking with a total of 20 thousand simulated nucleotides in silico.

Figure 12: Fusion Cas staples hold stapled nucleotides in close proximity.

5.2. Cas Staple Forces Do Not Distrub DNA Strand Integrity

Figure 13: Cas stapled plasmids.

Next, we aimed to stress test our system to determine the amount of force required to induce DNA double-strand breaks. To achieve this, we used an identical setup to the previous experiment but instead of experimentally determined forces, we used artificial forces of varying strength. It is important to know that our in silico model responds to forces that cause double-strand breaks by scattering the nucleotides across the simulation box. As the specified bonds cannot actually break within the simulation, the phosphate backbone bonds become severely distorted and exhibit erratic behavior in the simulation videos. From our extensive simulations, we concluded that the forces required to damage the DNA are approximately 320 times (Fig. 15) and 680 times greater (Fig. 16) than the forces exerted by the Cas staple, respectively.

This provides important evidence regarding the safety of our staple approach for 3D genome engineering: According to our model, DNA-DNA tethering with our Cas staples is not expected to have a negative effect on the DNA stability.

Figure 14: Applying a force that is 270 times greater
than the predicted force typically exerted by a Cas staple on DNA.
Figure 15: Applying a force that is 320 times greater
than the predicted force typically exerted by a Cas staple on DNA.
Figure 16: Applying a force that is 680 times greater
than the predicted force typically exerted by a Cas staple on DNA.
Figure 17: Applying a force that is more than 1000 times greater
than the predicted force typically exerted by a Cas staple on DNA.

5.3. DaVinci Helps to Design Multi-Staple Arrangements

Figure 18: Double Cas stapling within 40 nucleotide distance induces double-strand breaks.

Finally, we simulated the behavior of multiple staples at once. Therefore, we expanded our previously introduced experimental setup by a second Cas staple.
In a first approach, we targeted an additional region next to the original chosen one. This region is 40 nucleotides away from the first target region on the plasmid displayed in blue connecting it to the opposite site of the orange plasmid, therefore bringing both ends of the orange plasmid together (Fig. 18).
Our simulation predicted that with these staple points, DNA double-strand breaks would occur as clearly visible by the scattered nucleotides (Fig. 19).

Figure 19: Double Cas stapling within 40 nucleotide distance induces double-strand breaks.
Figure 20: Stable multiplexing with 2 Cas staples. On the blue plasmid, the Cas binding sequences are 980 nucleotides apart.

To simulate a setup where we expect no double-strand breaks, we increased the distance between the stapling sites on the blue plasmid (BBa_K5237023) from 40 to 980 nucleotides (Fig. 20).
With this increased distance between stapling sites, we observed a stabilized system. Most interestingly, the non-stapled regions showed maximum distances close to 500 nm, indicating that the two staples led to more compact plasmid structures.

In conclusion, we show that applying multiple staples on the same structures can lead to double-strand breaks if the staples are positioned closely to one another. However, increasing the separation of staples leads to a stable system without DNA damage. Thus, it is definitely possible to multiplex Cas staples, thereby increasing the compactness of DNA structures (Fig. 21). This shows the potential of creating complex regulatory networks by bringing genetic elements into spatial proximity with a multitude of Cas protein staples.

Figure 21: Increasing the distance between Cas staple targets to 980 nucleotides stabilizes multiplexing.

6. References

Kakidani, H., & Ptashne, M. (1988). GAL4 activates gene expression in mammalian cells. Cell, 52, 161-167. https://doi.org/10.1016/0092-8674(88)90504-1.

Segil, N., Roberts, S., & Heintz, N. (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science, 254(5039), 1814-1816. https://doi.org/10.1126/SCIENCE.1684878.

Sladitschek, H. L., & Neveu, P. A. (2015). MXS-Chaining: a highly efficient cloning platform for imaging and flow cytometry approaches in mammalian systems. PLoS ONE, 10(4), e0124958. https://doi.org/10.1371/journal.pone.0124958.