Difference between revisions of "Part:BBa K5236007"

 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
<partinfo>BBa_K5236007 short</partinfo>
 
<partinfo>BBa_K5236007 short</partinfo>
  
This basic part encodes mutated IsPETase W159HF229Y, which comes from academic essays but is constructed by us in Escherichia coli.
+
IsPETase is  friendly to enviorment and energy-saving to chemical recycling of PET. However, the temperature for it to react is even lower than glass transition temperature of PET.This basic part encodes mutated IsPETase W159HF229Y, which comes from academic essays but is constructed by us in Escherichia coli.
 
+
  
  
 
===Usage and Biology===
 
===Usage and Biology===
  
To insert our parts into plasmids, we’ve designed primers and performed PCRs. Then, our genes were recombined into plasmids and transformed into chassis. To test if our part codes for the mutated IsPETase W159HF229Y we want and whether the enzyme works, we've completed two large experimental processes. The first step is plasmid construction. And the second is to test the enzymatic activity.
+
To generate mutated variants, we have trained a Transformer AI model. This model predicts the top 10 potential mutation sites, which are likely to have significant impacts on the enzyme's structure and function. Next, we analyzed the top 10 potential sites via Meta's ESM-1b model to eliminate the silent mutations, which involve changes in nucleotides that do not altering the corresponding amino acids. This ensures that the mutations result in changes in the enzyme's structure and thereby its function. For further information, please check the model page on our wiki. https://2024.igem.wiki/basis-china/model
  
By conducting colony PCR, we are able to test if our parts have been transformed into chassis successfully. The following result of electrophoresis proves that we’ve inserted genes into chassis since the sequence containing our mutated genes has a total of 891 base pairs and the results are in the right location.
+
The IsPETase W159HF229Y sequence is expressed in E.coli BL21(DE3) using the pET28a vector. The pET-28a is a classical plasmid vector used for protein expression in E.coli. This vector contains the T7 promoter, the lac operator, a ribosome binding site, the 6xHis sequence, and the T7 terminator. The T7 promoter is a strong promoter recognizable by T7 RNA polymerase, used to regulate gene expression of recombinant proteins. The lac operator can be activated by IPTG and used to control gene expression. The 6xHis sequence encodes for a tag that facilitates protein purification. Asides from the features included in the plasmid backbone, we added a signal peptide sequence — pELB — before the IsPETase W159HF229Y sequence, which is inserted between the promoter and terminator.
 +
 
 +
<center><html><img src ="https://static.igem.wiki/teams/5236/part-images/w159-plasmid.png" width = "50%"><br></html></center>
 +
<center>Fig.1 Constructed Plasmid </center>
  
 
<center><html><img src ="https://static.igem.wiki/teams/5236/part-images/colony-pcr.png" width = "50%"><br></html></center>
 
<center><html><img src ="https://static.igem.wiki/teams/5236/part-images/colony-pcr.png" width = "50%"><br></html></center>
<center>Fig.1 The DNA gel electrophoresis result </center>
+
<center>Fig.2 The DNA gel electrophoresis result </center>
  
 
<center><html><img src ="https://static.igem.wiki/teams/5236/part-images/w159hf229y-sequence-cycle-3.png" width = "50%"><br></html></center>
 
<center><html><img src ="https://static.igem.wiki/teams/5236/part-images/w159hf229y-sequence-cycle-3.png" width = "50%"><br></html></center>
<center>Fig.2 The result of IsPETase W159HF229Y DNA sequencing  </center>
+
<center>Fig.3 The result of IsPETase W159HF229Y DNA sequencing  </center>
  
 
After proving that our genes existed in chassis, we need to test if the bacteria can survive as usual with our genes. Thus, we’ve coated the bacteria on nutritional petri dish. And after a night, E. coli grew over the plate our plate, justifying that E. coli can survive with the gene of our part.   
 
After proving that our genes existed in chassis, we need to test if the bacteria can survive as usual with our genes. Thus, we’ve coated the bacteria on nutritional petri dish. And after a night, E. coli grew over the plate our plate, justifying that E. coli can survive with the gene of our part.   
Line 25: Line 27:
 
We tested whether the bacteria could translate for our protein, and we examined whether our mutated enzyme is more efficient. For this section, we analyzed two results as well. First, the dynamic curve of our enzyme shows its high efficiency in degrading rate. Second, the electrophoresis result of our protein proves that our enzyme can be successfully coded by the parts we designed.
 
We tested whether the bacteria could translate for our protein, and we examined whether our mutated enzyme is more efficient. For this section, we analyzed two results as well. First, the dynamic curve of our enzyme shows its high efficiency in degrading rate. Second, the electrophoresis result of our protein proves that our enzyme can be successfully coded by the parts we designed.
  
<center><html><img src ="https://static.igem.wiki/teams/5236/part-images/ispetase-mutation-efficiency-line-graph.jpg" width = "50%"><br></html></center>
+
<center><html><img src ="https://static.igem.wiki/teams/5236/yh/ispet-relative-activity.jpg" width = "50%"><br></html></center>
<center>Fig.3 Mutated IsPETase Dynamic Curve </center>
+
<center>Fig.4 Mutated IsPETase Dynamic Curve </center>
 
+
<center><html><img src ="https://static.igem.wiki/teams/5236/part-images/sds-page.png" width = "50%"><br></html></center>
+
<center>Fig.4 Protein electrophoresis result </center>
+
 
+
 
+
After proving that our enzyme are more effiicient, we moved on to test the ultimate and the most essential part of our part examination, which is to test if our mutated enzyme can actually degrade plastics. For this large step of process, we also designed two approaches. 
+
 
+
First, the scanning electron microscope allows us to see the changes of plastic pieces with our bare eyes. However, pure observations are not enough to prove the effectiveness of our enzymes. Thus, we conducted another experiment. Though HPLC, we are able to see the enzyme and waste product curves after plastic degradation via our enzyme.
+
  
 
<!-- -->
 
<!-- -->
Line 48: Line 42:
  
 
===Reference===
 
===Reference===
Meng, Xiangxi, et al. “Protein Engineering of Stable ISPETASE for PET Plastic Degradation by Premuse.” International Journal of Biological Macromolecules, Elsevier, 19 Mar. 2021, www.sciencedirect.com/science/article/pii/S0141813021005730.
+
Brott, S., Pfaff, L., Schuricht, J., Schwarz, J.-N., Böttcher, D., Badenhorst, C. P. S., Wei, R., & Bornscheuer, U. T. (2021, November 29). Engineering and evaluation of thermostable isPETASE variants for PET degradation. Engineering in life sciences. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961046/

Latest revision as of 12:46, 2 October 2024

IsPETase W159HF229Y

IsPETase is friendly to enviorment and energy-saving to chemical recycling of PET. However, the temperature for it to react is even lower than glass transition temperature of PET.This basic part encodes mutated IsPETase W159HF229Y, which comes from academic essays but is constructed by us in Escherichia coli.


Usage and Biology

To generate mutated variants, we have trained a Transformer AI model. This model predicts the top 10 potential mutation sites, which are likely to have significant impacts on the enzyme's structure and function. Next, we analyzed the top 10 potential sites via Meta's ESM-1b model to eliminate the silent mutations, which involve changes in nucleotides that do not altering the corresponding amino acids. This ensures that the mutations result in changes in the enzyme's structure and thereby its function. For further information, please check the model page on our wiki. https://2024.igem.wiki/basis-china/model

The IsPETase W159HF229Y sequence is expressed in E.coli BL21(DE3) using the pET28a vector. The pET-28a is a classical plasmid vector used for protein expression in E.coli. This vector contains the T7 promoter, the lac operator, a ribosome binding site, the 6xHis sequence, and the T7 terminator. The T7 promoter is a strong promoter recognizable by T7 RNA polymerase, used to regulate gene expression of recombinant proteins. The lac operator can be activated by IPTG and used to control gene expression. The 6xHis sequence encodes for a tag that facilitates protein purification. Asides from the features included in the plasmid backbone, we added a signal peptide sequence — pELB — before the IsPETase W159HF229Y sequence, which is inserted between the promoter and terminator.


Fig.1 Constructed Plasmid

Fig.2 The DNA gel electrophoresis result

Fig.3 The result of IsPETase W159HF229Y DNA sequencing

After proving that our genes existed in chassis, we need to test if the bacteria can survive as usual with our genes. Thus, we’ve coated the bacteria on nutritional petri dish. And after a night, E. coli grew over the plate our plate, justifying that E. coli can survive with the gene of our part.

The result show that chassis carrying our PETase could survive.


We tested whether the bacteria could translate for our protein, and we examined whether our mutated enzyme is more efficient. For this section, we analyzed two results as well. First, the dynamic curve of our enzyme shows its high efficiency in degrading rate. Second, the electrophoresis result of our protein proves that our enzyme can be successfully coded by the parts we designed.


Fig.4 Mutated IsPETase Dynamic Curve

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 864
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 864
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 864
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 864
    Illegal AgeI site found at 627
  • 1000
    COMPATIBLE WITH RFC[1000]



Reference

Brott, S., Pfaff, L., Schuricht, J., Schwarz, J.-N., Böttcher, D., Badenhorst, C. P. S., Wei, R., & Bornscheuer, U. T. (2021, November 29). Engineering and evaluation of thermostable isPETASE variants for PET degradation. Engineering in life sciences. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961046/