Difference between revisions of "Part:BBa K5237006"

 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K5237006</partinfo>
 
<partinfo>BBa_K5237006</partinfo>
 
 
 
<!--Add changes below--->
 
<!--Add changes below--->
 
<html>
 
<html>
Line 27: Line 25:
 
     border: 0.5px solid black;
 
     border: 0.5px solid black;
 
     border-collapse: collapse;
 
     border-collapse: collapse;
 +
    padding: 5px;
 
   }
 
   }
  
   th,
+
   .thumbcaption {
  td {
+
     text-align: justify !important;
     padding: 1.5px;
+
 
   }
 
   }
</style>
 
  
 +
 +
  a[href ^="https://"],
 +
  .link-https {
 +
    background: none !important;
 +
    padding-right: 0px !important;
 +
  }
 +
 +
</style>
 
<body>
 
<body>
  <!-- Part summary -->
+
<!-- Part summary -->
  <section id="1">
+
<section>
    <h1>Simple-Staple: TetR-Oct1</h1>
+
<h1>Simple staple: TetR-Oct1</h1>
    <p>The Simple Staple (Oct1-DBD-TetR fusion) is a bivalent DNA-binding protein designed to bring two DNA sequences
+
<p>The Simple staple (Oct1-DBD-TetR fusion) is a bivalent DNA-binding protein designed to bring two DNA sequences
 
       into
 
       into
       close proximity, combining the human Oct1 DNA-binding domain (Oct1-DBD) and the bacterial tetracycline repressor
+
       close proximity. The Oct1 DNA-binding domain (Oct1-DBD) recognizes the octamer motif, while the tetracycline
       protein (TetR). Oct1-DBD recognizes the octamer motif, while TetR binds specifically to the tetO
+
       repressor protein (TetR) binds
      operator sequences. This Simple Staple was applied to establish a Förster Resonance Energy Transfer (FRET)-based
+
      specifically to the tetO operator sequences. This Simple Staple was applied to establish a Förster Resonance
       assay,
+
      Energy Transfer (FRET)-based
      which was used to monitor DNA-DNA proximity in bacterial systems.</p>
+
       assay, which was used to monitor DNA-DNA proximity in bacterial systems.</p>
    <p>&nbsp;</p>
+
<p> </p>
  </section>
+
</section>
  <div id="toc" class="toc">
+
<div class="toc" id="toc">
    <div id="toctitle">
+
<div id="toctitle">
      <h1>Contents</h1>
+
<h1>Contents</h1>
    </div>
+
</div>
    <ul>
+
<ul>
      <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
+
<li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 
             overview</span></a>
 
             overview</span></a>
      </li>
+
</li>
      <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
+
<li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
 
             Biology</span></a>
 
             Biology</span></a>
      </li>
+
</li>
      <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
+
<li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
 
             and part evolution</span></a>
 
             and part evolution</span></a>
      </li>
+
</li>
      <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
+
<li class="toclevel-1 tocsection-4"><a href="#4"><span class="tocnumber">4</span> <span class="toctext">Results</span></a>
            class="toctext">Results</span></a>
+
<ul>
      </li>
+
<li class="toclevel-2 tocsection-4.1"><a href="#4.1"><span class="tocnumber">4.1</span> <span class="toctext"><i>In vitro</i> DNA binding</span></a></li>
      <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
+
<li class="toclevel-2 tocsection-4.2"><a href="#4.2"><span class="tocnumber">4.2</span> <span class="toctext"><i>In vivo</i> DNA binding</span></a></li>
            class="toctext">References</span></a>
+
<li class="toclevel-2 tocsection-4.3"><a href="#4.3"><span class="tocnumber">4.3</span> <span class="toctext"><i>In Silico</i> Characterization using DaVinci</span></a></li>
      </li>
+
</ul>
    </ul>
+
</li>
  </div>
+
<li class="toclevel-1 tocsection-6"><a href="#5"><span class="tocnumber">5</span> <span class="toctext">Conclusion</span></a>
  <section id="part-collection">
+
<li class="toclevel-1 tocsection-8"><a href="#6"><span class="tocnumber">6</span> <span class="toctext">References</span></a>
    <font size="5"><b>The PICasSO Toolbox </b> </font>
+
</li>
    <p><br></p>
+
</li>
    <div class="thumb">
+
</ul>
      <div class="thumbinner" style="width:550px"><img alt=""
+
</div>
          src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
+
<section><p><br/><br/></p>
          style="width:99%;" class="thumbimage">
+
<font size="5"><b>The PICasSO Toolbox </b> </font>
        <div class="thumbcaption">
+
<div class="thumb" style="margin-top:10px;"></div>
          <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
+
<div class="thumbinner" style="width:550px"><img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;"/>
        </div>
+
<div class="thumbcaption">
      </div>
+
<i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
    </div>
+
</div>
 
+
</div>
 
+
<p>
    <p>
+
<br/>
      <br>
+
       While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
       The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
+
        spatial organization</b> of DNA is well-known to be an important layer of information encoding in
       impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
+
      particular in eukaryotes, playing a crucial role in
      chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
+
      gene regulation and hence
       manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
+
       cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
+
       genomic spatial
       toolbox based on various DNA-binding proteins to address this issue.
+
      architecture are limited, hampering the exploration of
 
+
       3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
 +
       <b>powerful
 +
        molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
 +
      various DNA-binding proteins.
 
     </p>
 
     </p>
    <p>
+
<p>
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
       re-programming
+
       <b>re-programming
      of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic
+
        of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables
       interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation.
+
      researchers to recreate naturally occurring alterations of 3D genomic
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
+
       interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
+
      artificial gene regulation and cell function control.
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
+
       Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic
 +
      loci into
 +
      spatial proximity.
 +
      To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
 +
      connected either at
 +
      the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are
 +
      referred to as protein- or Cas staples, respectively. Beyond its
 +
      versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
 +
      support the engineering, optimization, and
 +
       testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a
 +
       design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational
 +
        modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
 +
      parts.
 
     </p>
 
     </p>
 
+
<p>At its heart, the PICasSO part collection consists of three categories. <br/><b>(i)</b> Our <b>DNA-binding
    <p>At its heart, the PICasSO part collection consists of three categories. (i) Our <b>DNA-binding proteins</b>
+
        proteins</b>
 
       include our
 
       include our
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
+
       finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
       new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
+
      "half staples" that can be combined by scientists to compose entirely
       and can be further engineered to create alternative, simpler and more compact staples. (ii) As <b>functional
+
       new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
        elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
+
      and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
       consist of
+
      successful stapling
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
+
       and can be further engineered to create alternative, simpler, and more compact staples. <br/>
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's with our
+
<b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
       interkingdom conjugation system.
+
      functionality of our Cas and
    </p>
+
      Basic staples. These
    <p>
+
       consist of staples dependent on
      (iii) As the final component of our collection, we provide parts that support the use of our <b>custom readout
+
       cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
+
      dynamic stapling <i>in vivo</i>.
 +
       We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
 +
      target cells, including mammalian cells,
 +
      with our new
 +
       interkingdom conjugation system. <br/>
 +
<b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
 +
        readout
 +
         systems</b>. These include components of our established FRET-based proximity assay system, enabling
 +
      users to
 
       confirm
 
       confirm
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
+
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
       readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
+
       luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
 +
      hijacking events
 +
      in mammalian cells.
 
     </p>
 
     </p>
    <p>
+
<p>
       The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed
      exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
+
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
+
      parts in
       own custom Cas staples, enabling further optimization and innovation
+
      the
    </p>
+
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
    <p>
+
      their
      <font size="4"><b>Our part collection includes:</b></font><br>
+
       own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
    </p>
+
      engineering.<br/>
 
+
</p>
    <table style="width: 90%;">
+
<p>
      <td colspan="3" align="left"><b>DNA-binding proteins: </b>
+
<font size="4"><b>Our part collection includes:</b></font><br/>
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
+
</p>
        easy assembly.</td>
+
<table style="width: 90%; padding-right:10px;">
      <tbody>
+
<td align="left" colspan="3"><b>DNA-Binding Proteins: </b>
        <tr bgcolor="#FFD700">
+
         Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i></td>
          <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
+
<tbody>
          <td>fgRNA Entryvector MbCas12a-SpCas9</td>
+
<tr bgcolor="#FFD700">
          <td>Entryvector for simple fgRNA cloning via SapI</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
        </tr>
+
<td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td>
        <tr>
+
<td>Entry vector for simple fgRNA cloning via SapI</td>
          <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
+
</tr>
          <td>Half-Staple: dMbCas12a-Nucleoplasmin NLS</td>
+
<tr bgcolor="#FFD700">
          <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
        </tr>
+
<td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td>
        <tr>
+
<td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
          <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
+
          </td>
          <td>Half-Staple: SV40 NLS-dSpCas9-SV40 NLS</td>
+
</tr>
          <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
+
<tr bgcolor="#FFD700">
 +
<td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 +
<td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 +
<td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
 
           </td>
 
           </td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
          <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
<td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
          <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
+
<td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into
 +
            close
 +
            proximity
 
           </td>
 
           </td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
          <td>Half-Staple: Oct1-DBD</td>
+
<td>Staple Subunit: Oct1-DBD</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
+
<td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br/>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
          <td>Half-Staple: TetR</td>
+
<td>Staple Subunit: TetR</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
+
<td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br/>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
          <td>Simple-Staple: TetR-Oct1</td>
+
<td>Simple Staple: TetR-Oct1</td>
          <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
+
<td>Functional staple that can be used to bring two DNA strands in close proximity</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
          <td>Half-Staple: GCN4</td>
+
<td>Staple Subunit: GCN4</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
          <td>Half-Staple: rGCN4</td>
+
<td>Staple Subunit: rGCN4</td>
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
+
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
          <td>Mini-Staple: bGCN4</td>
+
<td>Mini Staple: bGCN4</td>
          <td>
+
<td>
 
             Assembled staple with minimal size that can be further engineered</td>
 
             Assembled staple with minimal size that can be further engineered</td>
        </tr>
+
</tr>
      </tbody>
+
</tbody>
      <td colspan="3" align="left"><b>Functional elements: </b>
+
<td align="left" colspan="3"><b>Functional Elements: </b>
         Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
         for custom applications.</td>
+
        optimization
      <tbody>
+
         for custom applications</td>
        <tr bgcolor="#FFD700">
+
<tbody>
          <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
+
<tr bgcolor="#FFD700">
          <td>Cathepsin B-Cleavable Linker (GFLG)</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
          <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits ,to make responsive
+
<td>Cathepsin B-cleavable Linker: GFLG</td>
 +
<td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
 +
            responsive
 
             staples</td>
 
             staples</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
          <td>Cathepsin B Expression Cassette</td>
+
<td>Cathepsin B Expression Cassette</td>
          <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
+
<td>Expression cassette for the overexpression of cathepsin B</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K52370012" target="_blank">BBa_K5237012</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
          <td>Caged NpuN Intein</td>
+
<td>Caged NpuN Intein</td>
          <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
<td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
             units</td>
+
            activation, which can be used to create functionalized staple
        </tr>
+
             subunits</td>
        <tr>
+
</tr>
          <td><a href="https://parts.igem.org/Part:BBa_K52370013" target="_blank">BBa_K5237013</a></td>
+
<tr>
          <td>Caged NpuC Intein</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
          <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
<td>Caged NpuC Intein</td>
             units</td>
+
<td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
        </tr>
+
            activation, which can be used to create functionalized staple
        <tr>
+
             subunits</td>
          <td><a href="https://parts.igem.org/Part:BBa_K52370014" target="_blank">BBa_K5237014</a></td>
+
</tr>
          <td>fgRNA processing casette</td>
+
<tr>
          <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
        </tr>
+
<td>Fusion Guide RNA Processing Casette</td>
        <tr>
+
<td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for
          <td><a href="https://parts.igem.org/Part:BBa_K52370015" target="_blank">BBa_K5237015</a></td>
+
            multiplexed 3D
          <td>Intimin anti-EGFR Nanobody</td>
+
            genome reprogramming</td>
          <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
+
</tr>
 +
<tr>
 +
<td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
 +
<td>Intimin anti-EGFR Nanobody</td>
 +
<td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for
 +
            large
 
             constructs</td>
 
             constructs</td>
        </tr>
+
</tr>
      </tbody>
+
<tr>
      <td colspan="3" align="left"><b>Readout Systems: </b>
+
<td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
+
<td>IncP Origin of Transfer</td>
        enabling swift testing and easy development for new systems.</td>
+
<td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
      <tbody>
+
            means of
        <tr bgcolor="#FFD700">
+
            delivery</td>
          <td><a href="https://parts.igem.org/Part:BBa_K52370016" target="_blank">BBa_K5237016</a></td>
+
</tr>
          <td>FRET-Donor: mNeonGreen-Oct1</td>
+
</tbody>
          <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
+
<td align="left" colspan="3"><b>Readout Systems: </b>
 +
         FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
 +
        mammalian cells
 +
      </td>
 +
<tbody>
 +
<tr bgcolor="#FFD700">
 +
<td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 +
<td>FRET-Donor: mNeonGreen-Oct1</td>
 +
<td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to
 +
            visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
        </tr>
+
</tr>
        <tr bgcolor="#FFD700">
+
<tr bgcolor="#FFD700">
          <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
          <td>FRET-Acceptor: TetR-mScarlet-I</td>
+
<td>FRET-Acceptor: TetR-mScarlet-I</td>
          <td>Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA
+
<td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
          <td>Oct1 Binding Casette</td>
+
<td>Oct1 Binding Casette</td>
          <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
<td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
 
             proximity assay</td>
 
             proximity assay</td>
        </tr>
+
</tr>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
          <td>TetR Binding Cassette</td>
+
<td>TetR Binding Cassette</td>
          <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
<td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
 +
            FRET
 
             proximity assay</td>
 
             proximity assay</td>
        </tr>
+
</tr>
        <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
        <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
+
<td>Cathepsin B-Cleavable <i>Trans</i>-Activator: NLS-Gal4-GFLG-VP64</td>
        <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
+
<td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
         </tr>
+
         </td>
        <tr>
+
<tr>
          <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
          <td>NLS-Gal4-VP64</td>
+
<td>NLS-Gal4-VP64</td>
          <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
+
<td><i>Trans</i>-activating enhancer, that can be used to simulate enhancer hijacking</td>
        </tr>
+
</tr>
        <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
        <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
+
<td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td>
        <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
+
<td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td>
        </tr>
+
<tr>
        <tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
          <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
+
<td>Oct1 - 5x UAS Binding Casette</td>
          <td>Oct1 - UAS binding casette</td>
+
<td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
          <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
+
</tr>
        </tr>
+
<tr>
        <tr>
+
<td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
          <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
+
<td>TRE-minimal Promoter- Firefly Luciferase</td>
          <td>Minimal promoter Firefly luciferase</td>
+
<td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence
          <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
+
            readout for
             simulated enhancer hijacking.</td>
+
             simulated enhancer hijacking</td>
        </tr>
+
</tr>
      </tbody>
+
</tbody>
    </table>
+
</table></section>
    </p>
+
<section id="1">
  </section>
+
<h1>1. Sequence overview</h1>
  <section id="1">
+
</section>
    <h1>1. Sequence overview</h1>
+
  </section>
+
 
</body>
 
</body>
 
 
</html>
 
</html>
 
 
<!--################################-->
 
<!--################################-->
<span class='h3bb'>Sequence and Features</span>
+
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237006 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237006 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<html>
 
<html>
 
 
 
<section id="2">
 
<section id="2">
  <h1>2. Usage and Biology</h1>
+
<h1>2. Usage and Biology</h1>
  <p>The Simple Staple (Oct1-DBD-TetR fusion) combines the well-characterized bacterial transcriptional repressor TetR
+
<p>The Simple Staple (TetR-Oct1-DBD fusion) combines the well-characterized bacterial transcriptional repressor TetR
 
     with
 
     with
 
     the human transcription factor Oct1-DBD, creating a versatile DNA-binding protein capable of bringing two DNA
 
     the human transcription factor Oct1-DBD, creating a versatile DNA-binding protein capable of bringing two DNA
 
     sequences
 
     sequences
 
     into proximity. TetR naturally functions in gram-negative bacteria by regulating the expression of the tetA gene in
 
     into proximity. TetR naturally functions in gram-negative bacteria by regulating the expression of the tetA gene in
     response to tetracycline. It binds selectively to palindromic tetO sequences with high affinity, forming a homodimer
+
     response to tetracycline (and derivatives). It binds selectively to the palindromic tetO sequences with high
     that dissociates upon exposure to tetracycline, allowing gene expression (Berens & Hillen, 2004). Its
+
    affinity, forming a homodimer
     well-understood
+
     that dissociates upon exposure to tetracycline, allowing gene expression (Berens &amp; Hillen, 2004).
     DNA-binding properties make it a reliable component in synthetic biology, particularly in systems where controlled
+
     Its well-understood
     DNA
+
     DNA-binding properties make it a reliable component in synthetic biology, particularly in systems where controllable
    interactions are crucial.</p>
+
     DNA interactions are crucial.</p>
 
+
<p>Oct1-DBD is a component of the human transcription factor Oct1, involved in immune
  <p>Oct1-DBD is a component of the human transcription factor Oct1, involved in immune
+
 
     regulation and stress responses. It binds specifically to the octamer motif (5'-ATGCAAAT-3') in promoter and
 
     regulation and stress responses. It binds specifically to the octamer motif (5'-ATGCAAAT-3') in promoter and
 
     enhancer
 
     enhancer
 
     regions, stabilizing DNA binding through its POU-specific and POU homeodomains (Lundbäck <i>et al.</i>, 2000).
 
     regions, stabilizing DNA binding through its POU-specific and POU homeodomains (Lundbäck <i>et al.</i>, 2000).
 
     Previous studies
 
     Previous studies
     have demonstrated that Oct1-DBD can be readily fused to other proteins, increasing solubility and preserving
+
     have demonstrated that Oct1-DBD can be readily fused to other proteins, increasing solubility whilst preserving
 
     DNA-binding
 
     DNA-binding
 
     capabilities (Park <i>et al.</i>, 2013; Stepchenko <i>et al.</i>, 2021).</p>
 
     capabilities (Park <i>et al.</i>, 2013; Stepchenko <i>et al.</i>, 2021).</p>
 
+
<p>The Simple staple was developed by fusing TetR to Oct1-DBD, is capable of bridging two DNA sequences carrying their
  <p>By fusing these two proteins, the Simple staple was developed to bridge DNA sequences carrying their respective
+
     specific binding sequences, and thus bringing them into close proximity.
     binding
+
     This bivalent DNA-binding system was successfully applied in our project to establish a FRET-based proximity
     motifs. This bivalent DNA-binding system was successfully applied in our project to establish a FRET-based proximity
+
 
     assay, enabling real-time monitoring of DNA interactions in bacterial systems. This versatile and modular approach
 
     assay, enabling real-time monitoring of DNA interactions in bacterial systems. This versatile and modular approach
     opens
+
     opens up new possibilities for synthetic gene regulation and spatial genome organization.</p>
    up new possibilities for synthetic gene regulation and spatial genome organization.</p>
+
 
</section>
 
</section>
 
<section id="3">
 
<section id="3">
  <h1>3. Assembly and part evolution</h1>
+
<h1>3. Assembly and Part Evolution</h1>
  <p>The Oct1-DBD amino acid sequence was obtained from UniProt (<a href="https://www.uniprot.org/uniprot/P14859"
+
<p>The amino acid sequence of TetR and Oct1 were obtained from the UniProt database (<a href="https://www.uniprot.org/uniprotkb/P04483/entry" target="_blank">P04483</a> and <a href="https://www.uniprot.org/uniprot/P14859" target="_blank">P14859</a>, respectively).
      target="_blank">P14859</a>, POU domain, class 2, transcription factor 1)
+
     The DNA binding domain for Oct1-DBD was extracted based on information given from Park <i>et al.</i> 2013 &amp; 2020.  
     and DNA binding domain extracted based on information given from Park <i>et al.</i> 2013 & 2020. TetR amino acid
+
     Coding sequences were codon optimized for <i>E. coli</i> and obtained through gene synthesis.  
     sequence was obtaine from UniProt (<a href="https://www.uniprot.org/uniprotkb/P04483/entry"
+
      target="_blank">P04483</a>). Coding sequences were codon optimized for <i>E. coli</i> and obtained through gene
+
    synthesis.
+
 
     The proteins were genetically linked with a short GSGGS linker.
 
     The proteins were genetically linked with a short GSGGS linker.
 
   </p>
 
   </p>
 
</section>
 
</section>
 
<section id="4">
 
<section id="4">
  <h1>4. Results</h1>
+
<h1>4. Results</h1>
  <h2><i>In vitro</i> DNA binding</h2>
+
<section id="4.1">
  <p>The Simple staple construct was modified with a C-terminal His<sub>6</sub>-tag and expressed under T7 promoter.
+
<h2>4.1 <i>In Vitro</i> DNA Binding</h2>
    Protein was purified with a Ni-NTA affinity column. Fractions were analysed on a 4-15 % SDS-Page (Fig. 2, left). Strong
+
<p>The Simple staple construct was modified with a C-terminal His<sub>6</sub>-tag and expressed under the T7 promoter.
    bands
+
      The protein was purified with a Ni-NTA affinity column and fractions were analysed on a 4-15 % SDS-Page (Fig. 2, left).
    of the protein of interest are visible in the raw lysate indicating strong expression. Even though a strong band was
+
      Strong bands for the protein of interest were visible in the raw lysate indicating strong expression. Even though a strong band
    seen in the flow through,
+
      was seen in the flow-through, indicating unbound protein of interest, the purified fraction had a strong band with almost no unspecific
    indicating unbound protein of interest, the purified fraction showed a strong band with almost no unspecific
+
      proteins co-purified. The eluate contained 1.5 mg/mL protein, resulting in a total of ~ 3.34 mg purified protein.
    proteins co-purified. The eluate contained 1.5 mg/mL protein,
+
    </p>
    resulting in a total of &#8967; 3.34 mg purified protein.
+
<p>
  </p>
+
      For the Electrophoretic Mobility Shift Assay (EMSA), varying concentration of the purified protein (15
  <p>
+
      µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM) were incubated with 0.5 µM of annealed oligos containing either the Oct1 (5'-ATGCAAAT-3') or tetO
    Electrophoretic Mobility Shift Assay (EMSA) was performedn. Varying concentration of the purified Simple staple (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM)
+
      (5'TCCCTATCAGTGATAGAGA3') binding site.
    were incubated with 0.5 µM of annealed oligos containing either the Oct1 (5'-ATGCAAAT-3') or tetO (5'TCCCTATCAGTGATAGAGA3') binding site.  
+
      A clear, concentration dependant, shift could be detected for both target sites. Indicating that the Simple staple
    A clear, concentration dependant, shift could be detected for both target sites. This shows that the Simple staple is able to bind both DNA sequences <i>in vitro</i>.
+
      is able to bind both DNA sequences <i>in vitro</i>. Incubation of the protein with both DNA sequences did not result in slower migration speed compared to the single binding sites (data not shown).
  </p>
+
    </p>
  <div class="thumb">
+
<div class="thumb">
    <div class="thumbinner" style="width:57%;">
+
<div class="thumbinner" style="width:510px;">
      <div style="display: flex; justify-content: center; border:none;">
+
<div style="display: flex; justify-content: center; border:none;">
        <div style="border:none;">
+
<div style="border:none;">
          <img src="https://static.igem.wiki/teams/5237/wetlab-results/bs-sds-page-tetr-oct1-fus.svg" style="height: 300px; width: auto;" class="thumbimage">
+
<img class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/bs-sds-page-tetr-oct1-fus.svg" style="height: 300px; width: auto;"/>
 +
</div>
 +
<div style="border:none;">
 +
<img class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/sist-emsa-staple.svg" style="height: 300px; width: auto;"/>
 +
</div>
 +
</div>
 +
<div class="thumbcaption">
 +
<i><b>Figure 2: SDS-PAGE and EMSA Analysis of the TetR-Oct1 Fusion Protein.</b></i> Left: Fractions were
 +
          loaded on a 4-15 %
 +
          SDS-PAGE gel and stained with coomassie blue. Lane 1: raw lysate, Lane 2: flow through, Lane 3: purified
 +
          protein.
 +
          Right: Electrophoretic Mobility Shift Assay of TetR-Oct1 in PBS (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM
 +
          protein with 0.5 µM DNA), post stained with SYBR-safe.
 
         </div>
 
         </div>
        <div style="border:none;">
+
</div>
          <img src="https://static.igem.wiki/teams/5237/wetlab-results/sist-emsa-staple.svg" style="height: 300px; width: auto;" class="thumbimage">
+
</div>
        </div>
+
</section>
      </div>
+
<section id="4.2">
      <div class="thumbcaption">
+
<h2>4.2 <i>In vivo</i> DNA binding</h2>
        <i><b>Figure 2: SDS-PAGE and EMSA analysis of the TetR-Oct1 fusion protein.</b></i> Left: Fractions were loaded on a 4-15 %
+
<div class="thumb tright" style="margin:0;">
        SDS-PAGE gel and stained with coomassie blue. Lane 1: raw lysate, Lane 2: flow through, Lane 3: purified fraction.
+
<div class="thumbinner" style="width:500px;">
        Right: Electrophoretic Mobility Shift Assay of tetR-Oct1 in PBS (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM protein with 0.5 µM DNA)
+
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/figures-corrected/basic-staple-fret.svg" style="width:99%;"/>
      </div>
+
<div class="thumbcaption">
    </div>
+
<i>
  </div>
+
<b>Figure 3: Schematic of FRET-based Proximity Assay for DNA Stapling.</b>
 
+
<b>A</b> In the absence of TetR-Oct1 no stapling occurs
  <h2><i>In vivo</i> DNA binding</h2>
+
                <b>B</b> Oct1-TetR staples together the plasmids and brings FRET pairs in close proximity, resulting in measurable fluorescence
  <p>The Förster Resonance Energy Transfer (FRET) assay was developed using a two-plasmid system in bacterial cells. The
+
            </i>
    expression plasmid contains a tetR
+
</div>
    binding site and expresses three key proteins under the control of a single T7 promoter in a polycistronic operon:
+
</div>
    (1) tetR-Oct1, our simple staple fusion protein that acts as a bivalent DNA-binding protein, tethering two plasmids
+
</div>
    via tetR  and Oct1 binding sites (<a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a>, <a href="https://parts.igem.org/Part:BBa_K5237018">BBa_K5237018</a>); (2) Oct1-mNeonGreen (<a href="https://parts.igem.org/Part:BBa_K5237016"
+
<p>The Förster Resonance Energy Transfer (FRET) assay was developed using a two-plasmid system in bacterial cells.
      target="_blank">BBa_K2375016</a>), serving as the FRET donor; and (3) tetR-mScarlet-I (<a
+
      The expression plasmid contains a TetR
      href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K2375017</a>), the FRET
+
      binding site and expresses three key proteins under the control of a single T7 promoter in a polycistronic operon:
    acceptor. This ensures all three proteins are co-expressed in similar stoichiometry. The folding plasmid contains an
+
      (1) TetR-Oct1, our Simple staple a bivalent DNA-binding fusion protein, tethering together two plasmids by binding the TetR and Oct1 binding sites (<a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a>, <a href="https://parts.igem.org/Part:BBa_K5237018">BBa_K5237018</a>); (2)
    Oct1 binding site for the staple and FRET donor binding.</p>
+
      Oct1-mNeonGreen (<a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K2375016</a>), serving as
  <p>
+
      the FRET-donor; and (3) TetR-mScarlet-I (<a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K2375017</a>), the FRET-acceptor. This ensures all three proteins are co-expressed in similar stoichiometry. The folding plasmid contains
    When tetR-Oct1 binds its respective sites on both plasmids, it brings mNeonGreen and mScarlet-I into close
+
      12 repeats of the Oct1 binding site for binding of the staple and FRET-donor.</p>
    proximity, facilitating FRET between the two fluorophores. Successful stapling of the plasmids results in increased
+
<p>
    energy transfer from mNeonGreen to mScarlet-I, which can be detected by exciting mNeonGreen and measuring enhanced
+
      When TetR-Oct1 binds its respective sites on both plasmids, it brings mNeonGreen and mScarlet-I into close
    emission from mScarlet-I. A positive control, consisting of a direct fusion of mNeonGreen and mScarlet-I, ensures
+
      proximity, facilitating FRET between the two fluorophores. Successful stapling of the plasmids results in
    maximal FRET efficiency and serves as a benchmark for the assay.</p>
+
      increased
  <p>
+
      energy transfer from mNeonGreen to mScarlet-I, which can be detected by exciting mNeonGreen and measuring enhanced
    Samples were induced with 0.05 mM IPTG and fluoresence intensity of mNeonGreen, mScarlet-I and FRET was measured
+
      emission from mScarlet-I. A positive control, consisting of a direct fusion of mNeonGreen and mScarlet-I, ensures
    after 18 h.
+
      maximal FRET efficiency and serves as a benchmark for the assay.</p>
    he positive control exhibited significantly higher fluorescence intensity for both mNeonGreen and mScarlet-I,
+
<p>
    indicating
+
      Samples were induced with 0.05 mM IPTG and fluorescence intensity of mNeonGreen, mScarlet-I and FRET was measured
    stronger expression levels of the FRET pair in this condition. Both the negative control and the staple showed
+
      after 18 h.
    comparable fluorescence for mNeonGreen and mScarlet-I. A small but significant difference was observed for
+
      he positive control exhibited significantly higher fluorescence intensity for both mNeonGreen and mScarlet-I,
    mNeonGreen (p = 0.0416).
+
      indicating
    Importantly the measured FRET signal was significantly higher for the sample compared to the negative control (p
+
      stronger expression levels of the FRET pair in this condition. Both the negative control and the staple showed
    &lt; 0.0001).
+
      comparable fluorescence for mNeonGreen and mScarlet-I. A small but significant difference was observed for
    This indicates that the TetR-Oct1 staple successfully brought the two plasmids into close proximity, allowing for
+
      mNeonGreen (p = 0.0416).
    FRET to occur.
+
      Importantly the measured FRET signal was significantly higher for the sample compared to the negative control (p
  </p>
+
      &lt; 0.0001).
  <div class="thumb">
+
      This indicates that the TetR-Oct1 staple successfully brought the two plasmids into close proximity, allowing for
    <div class="thumbinner" style="width:50%;">
+
      FRET to occur.
      <img alt="FRET_tetR-Oct1" src="https://static.igem.wiki/teams/5237/wetlab-results/sist-fret-final.svg"
+
    </p>
        style="width:99%;" class="thumbimage">
+
<div class="thumb">
      <div class="thumbcaption">
+
<div class="thumbinner" style="width:50%;">
        <i><b>Figure 3: Fluorescence measurement of mNeonGreen, mScarlet-I and FRET.</b> Fluorescence intensity of mNeonGreen
+
<img alt="FRET_TetR-Oct1" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/sist-fret-final.svg" style="width:99%;"/>
          (ex. 490 nm, em. 530 nm), mScarlet-I (ex. 560 nm, em. 600 nm), and FRET (ex. 490 nm, em. 600 nm) was measured 18 hours
+
<div class="thumbcaption">
          after IPTG induction (0.05 mM) and normalized to cell count (OD<sub>600</sub>).
+
<i><b>Figure 4: Fluorescence Measurement of mNeonGreen, mScarlet-I and FRET.</b> Fluorescence intensity of
          Statistical significance was determined with Ordinary two-way ANOVA withŠidák's multiple comparison test, with
+
            mNeonGreen
          a single pooled variance. *p &lt; 0.05, ****p &lt; 0.001. Data is depicted as mean (n=3) &#177; SD</i>
+
            (ex. 490 nm, em. 530 nm), mScarlet-I (ex. 560 nm, em. 600 nm), and FRET (ex. 490 nm, em. 600 nm) was
      </div>
+
            measured
     </div>
+
            18 hours
 +
            after IPTG induction (0.05 mM) and normalized to cell count (OD<sub>600</sub>).
 +
            Statistical significance was determined with Ordinary two-way ANOVA with Šidák's multiple comparison test,
 +
            with
 +
            a single pooled variance. *p &lt; 0.05, ****p &lt; 0.001. Data is depicted as mean (n=3) ± SD</i>
 +
</div>
 +
</div>
 +
</div>
 +
</section>
 +
<section id="4.3">
 +
<h2>4.3 <i>In Silico</i> Characterization using DaVinci</h2>
 +
<p>
 +
      We developed the <i>in silico</i> model <a href="https://2024.igem.wiki/heidelberg/model" target="_blank">DaVinci</a>
 +
      for rapid engineering
 +
      and development of our PICasSO system.
 +
      DaVinci acts as a digital twin to PICasSO, designed to understand the forces acting on our system,
 +
      refine experimental parameters, and find optimal connections between protein staples and target DNA.
 +
      We calibrated DaVinci with literature and our own experimental affinity data calculated from EMSA assays with
 +
      purified proteins
 +
      DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged
 +
      DNA
 +
      dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the
 +
      DNA-binding interaction.<br/>
 +
      The structures shown in Figure 5 were predicted using the AlphaFold server and the protein-DNA interaction
 +
      further
 +
      analyzed with all atom dynamics simulations. The depicted structures show favorable DNA binding, and no apparent
 +
      problems with the fusion protein and DNA binding were detected.
 +
     </p>
 +
<div class="thumb">
 +
<div class="thumbinner" style="width:80%;">
 +
<img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/model/structure-figure-2-png.svg" style="width: 99%;"/>
 +
<div class="thumbcaption">
 +
<i><b>Figure 5: Representations of the Simple Staple Constructs</b>
 +
            Proteins are shown in full color (top row) and by their predicted structural accuracy during DNA
 +
            interaction.
 +
            The linkers were selected based on their structural property providing maximal flexibility. All structures
 +
            were predicted using the AlphaFold server (Google DeepMind, 2024).</i>
 +
</div>
 +
</div>
 +
</div></section>
 
</section>
 
</section>
 
<section id="5">
 
<section id="5">
  <h1>5. References</h1>
+
<h1>5. Conclusion</h1>
  <p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg<sup>2+</sup> Reveals Mechanism of Antibiotic Resistance. <em>Journal of Molecular Biology, 247</em>(2), 260–280. <a href="https://doi.org/10.1006/jmbi.1994.0138" target="_blank">https://doi.org/10.1006/jmbi.1994.0138</a></p>
+
<p>The Simple staple (Oct1-DBD-TetR fusion) is a versatile bivalent DNA-binding protein that brings two DNA sequences
 
+
    into close proximity. It was successfully applied to establish a FRET-based assay to monitor DNA-DNA proximity in
<p>Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. <em>Nucleic Acids Research, 31</em>(12), 3050–3056.</p>
+
    bacterial systems. The results demonstrate the Simple Staple's functionality in both <i>in vitro</i> and <i>in
 
+
      vivo</i> settings,
<p>Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of Sequence-Specific DNA Binding by the Transcription Factor Oct-1. <em>Biochemistry, 39</em>(25), 7570–7579. <a href="https://doi.org/10.1021/bi000377h" target="_blank">https://doi.org/10.1021/bi000377h</a></p>
+
    highlighting its potential for future applications in gene regulation and spatial genome organization.</p>
 
+
</section>
<p>Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. <em>Nature Structural Biology, 7</em>(3), 215–219. <a href="https://doi.org/10.1038/73324" target="_blank">https://doi.org/10.1038/73324</a></p>
+
<section id="6">
 
+
<h1>6. References</h1>
<p>Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. <em>Journal of Bioscience and Bioengineering, 116</em>(2), 246–252. <a href="https://doi.org/10.1016/j.jbiosc.2013.02.005" target="_blank">https://doi.org/10.1016/j.jbiosc.2013.02.005</a></p>
+
<p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., &amp; Saenger, W. (1995). The Complex Formed Between Tet Repressor
 
+
    and Tetracycline-Mg<sup>2+</sup> Reveals Mechanism of Antibiotic Resistance. <em>Journal of Molecular Biology,
<p>Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim, S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell Biotransformation Efficiency. <em>Frontiers in Bioengineering and Biotechnology, 7</em>. <a href="https://doi.org/10.3389/fbioe.2019.00444" target="_blank">https://doi.org/10.3389/fbioe.2019.00444</a></p>
+
      247</em>(2), 260–280. <a href="https://doi.org/10.1006/jmbi.1994.0138" target="_blank">https://doi.org/10.1006/jmbi.1994.0138</a></p>
 
+
<p>Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., &amp; Hillen, W. (2003). Single-chain Tet transregulators.
<p>Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., & Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. <em>Scientific Reports, 11</em>(1), 18808. <a href="https://doi.org/10.1038/s41598-021-98323-y" target="_blank">https://doi.org/10.1038/s41598-021-98323-y</a></p>
+
    <em>Nucleic Acids Research, 31</em>(12), 3050–3056.
 
+
  </p>
<p>Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). Improved single-chain transactivators of the Tet-On gene expression system. <em>BMC Biotechnology, 7</em>, 6. <a href="https://doi.org/10.1186/1472-6750-7-6" target="_blank">https://doi.org/10.1186/1472-6750-7-6</a></p>
+
<p>Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., &amp; Ladbury, J. E. (2000). Characterization of
 
+
    Sequence-Specific DNA Binding by the Transcription Factor Oct-1. <em>Biochemistry, 39</em>(25), 7570–7579. <a href="https://doi.org/10.1021/bi000377h" target="_blank">https://doi.org/10.1021/bi000377h</a></p>
 
+
<p>Orth, P., Schnappinger, D., Hillen, W., Saenger, W., &amp; Hinrichs, W. (2000). Structural basis of gene regulation
 +
    by the tetracycline inducible Tet repressor-operator system. <em>Nature Structural Biology, 7</em>(3), 215–219. <a href="https://doi.org/10.1038/73324" target="_blank">https://doi.org/10.1038/73324</a></p>
 +
<p>Park, J. H., Kwon, H. W., &amp; Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1
 +
    DNA-binding domain suitable for in vitro screening of engineered proteins. <em>Journal of Bioscience and
 +
      Bioengineering, 116</em>(2), 246–252. <a href="https://doi.org/10.1016/j.jbiosc.2013.02.005" target="_blank">https://doi.org/10.1016/j.jbiosc.2013.02.005</a></p>
 +
<p>Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim,
 +
    S.-K., &amp; Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell
 +
    Biotransformation Efficiency. <em>Frontiers in Bioengineering and Biotechnology, 7</em>. <a href="https://doi.org/10.3389/fbioe.2019.00444" target="_blank">https://doi.org/10.3389/fbioe.2019.00444</a></p>
 +
<p>Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., &amp;
 +
    Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells
 +
    from stress. <em>Scientific Reports, 11</em>(1), 18808. <a href="https://doi.org/10.1038/s41598-021-98323-y" target="_blank">https://doi.org/10.1038/s41598-021-98323-y</a></p>
 +
<p>Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., &amp; Das, A. T. (2007).
 +
    Improved single-chain transactivators of the Tet-On gene expression system. <em>BMC Biotechnology, 7</em>, 6. <a href="https://doi.org/10.1186/1472-6750-7-6" target="_blank">https://doi.org/10.1186/1472-6750-7-6</a></p>
 
</section>
 
</section>
</body>
 
 
 
</html>
 
</html>

Latest revision as of 11:55, 2 October 2024

BBa_K5237006

Simple staple: TetR-Oct1

The Simple staple (Oct1-DBD-TetR fusion) is a bivalent DNA-binding protein designed to bring two DNA sequences into close proximity. The Oct1 DNA-binding domain (Oct1-DBD) recognizes the octamer motif, while the tetracycline repressor protein (TetR) binds specifically to the tetO operator sequences. This Simple Staple was applied to establish a Förster Resonance Energy Transfer (FRET)-based assay, which was used to monitor DNA-DNA proximity in bacterial systems.



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D spatial organization of DNA is well-known to be an important layer of information encoding in particular in eukaryotes, playing a crucial role in gene regulation and hence cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the genomic spatial architecture are limited, hampering the exploration of 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox for rationally engineering genome 3D architectures in living cells, based on various DNA-binding proteins.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as "half staples" that can be combined by scientists to compose entirely new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for successful stapling and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the functionality of our Cas and Basic staples. These consist of staples dependent on cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, dynamic stapling in vivo. We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into target cells, including mammalian cells, with our new interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a luciferase reporter, which allows for straightforward experimental assessment of functional enhancer hijacking events in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome engineering.

Our part collection includes:

DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo
BBa_K5237000 Fusion Guide RNA Entry Vector MbCas12a-SpCas9 Entry vector for simple fgRNA cloning via SapI
BBa_K5237001 Staple Subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
BBa_K5237002 Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple Subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple Subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple Staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple Subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple Subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini Staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237014 Fusion Guide RNA Processing Casette Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs
BBa_K4643003 IncP Origin of Transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promoter, mCherry Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS Binding Casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal Promoter- Firefly Luciferase Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 493
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

The Simple Staple (TetR-Oct1-DBD fusion) combines the well-characterized bacterial transcriptional repressor TetR with the human transcription factor Oct1-DBD, creating a versatile DNA-binding protein capable of bringing two DNA sequences into proximity. TetR naturally functions in gram-negative bacteria by regulating the expression of the tetA gene in response to tetracycline (and derivatives). It binds selectively to the palindromic tetO sequences with high affinity, forming a homodimer that dissociates upon exposure to tetracycline, allowing gene expression (Berens & Hillen, 2004). Its well-understood DNA-binding properties make it a reliable component in synthetic biology, particularly in systems where controllable DNA interactions are crucial.

Oct1-DBD is a component of the human transcription factor Oct1, involved in immune regulation and stress responses. It binds specifically to the octamer motif (5'-ATGCAAAT-3') in promoter and enhancer regions, stabilizing DNA binding through its POU-specific and POU homeodomains (Lundbäck et al., 2000). Previous studies have demonstrated that Oct1-DBD can be readily fused to other proteins, increasing solubility whilst preserving DNA-binding capabilities (Park et al., 2013; Stepchenko et al., 2021).

The Simple staple was developed by fusing TetR to Oct1-DBD, is capable of bridging two DNA sequences carrying their specific binding sequences, and thus bringing them into close proximity. This bivalent DNA-binding system was successfully applied in our project to establish a FRET-based proximity assay, enabling real-time monitoring of DNA interactions in bacterial systems. This versatile and modular approach opens up new possibilities for synthetic gene regulation and spatial genome organization.

3. Assembly and Part Evolution

The amino acid sequence of TetR and Oct1 were obtained from the UniProt database (P04483 and P14859, respectively). The DNA binding domain for Oct1-DBD was extracted based on information given from Park et al. 2013 & 2020. Coding sequences were codon optimized for E. coli and obtained through gene synthesis. The proteins were genetically linked with a short GSGGS linker.

4. Results

4.1 In Vitro DNA Binding

The Simple staple construct was modified with a C-terminal His6-tag and expressed under the T7 promoter. The protein was purified with a Ni-NTA affinity column and fractions were analysed on a 4-15 % SDS-Page (Fig. 2, left). Strong bands for the protein of interest were visible in the raw lysate indicating strong expression. Even though a strong band was seen in the flow-through, indicating unbound protein of interest, the purified fraction had a strong band with almost no unspecific proteins co-purified. The eluate contained 1.5 mg/mL protein, resulting in a total of ~ 3.34 mg purified protein.

For the Electrophoretic Mobility Shift Assay (EMSA), varying concentration of the purified protein (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM) were incubated with 0.5 µM of annealed oligos containing either the Oct1 (5'-ATGCAAAT-3') or tetO (5'TCCCTATCAGTGATAGAGA3') binding site. A clear, concentration dependant, shift could be detected for both target sites. Indicating that the Simple staple is able to bind both DNA sequences in vitro. Incubation of the protein with both DNA sequences did not result in slower migration speed compared to the single binding sites (data not shown).

Figure 2: SDS-PAGE and EMSA Analysis of the TetR-Oct1 Fusion Protein. Left: Fractions were loaded on a 4-15 % SDS-PAGE gel and stained with coomassie blue. Lane 1: raw lysate, Lane 2: flow through, Lane 3: purified protein. Right: Electrophoretic Mobility Shift Assay of TetR-Oct1 in PBS (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM protein with 0.5 µM DNA), post stained with SYBR-safe.

4.2 In vivo DNA binding

Figure 3: Schematic of FRET-based Proximity Assay for DNA Stapling. A In the absence of TetR-Oct1 no stapling occurs B Oct1-TetR staples together the plasmids and brings FRET pairs in close proximity, resulting in measurable fluorescence

The Förster Resonance Energy Transfer (FRET) assay was developed using a two-plasmid system in bacterial cells. The expression plasmid contains a TetR binding site and expresses three key proteins under the control of a single T7 promoter in a polycistronic operon: (1) TetR-Oct1, our Simple staple a bivalent DNA-binding fusion protein, tethering together two plasmids by binding the TetR and Oct1 binding sites (BBa_K5237019, BBa_K5237018); (2) Oct1-mNeonGreen (BBa_K2375016), serving as the FRET-donor; and (3) TetR-mScarlet-I (BBa_K2375017), the FRET-acceptor. This ensures all three proteins are co-expressed in similar stoichiometry. The folding plasmid contains 12 repeats of the Oct1 binding site for binding of the staple and FRET-donor.

When TetR-Oct1 binds its respective sites on both plasmids, it brings mNeonGreen and mScarlet-I into close proximity, facilitating FRET between the two fluorophores. Successful stapling of the plasmids results in increased energy transfer from mNeonGreen to mScarlet-I, which can be detected by exciting mNeonGreen and measuring enhanced emission from mScarlet-I. A positive control, consisting of a direct fusion of mNeonGreen and mScarlet-I, ensures maximal FRET efficiency and serves as a benchmark for the assay.

Samples were induced with 0.05 mM IPTG and fluorescence intensity of mNeonGreen, mScarlet-I and FRET was measured after 18 h. he positive control exhibited significantly higher fluorescence intensity for both mNeonGreen and mScarlet-I, indicating stronger expression levels of the FRET pair in this condition. Both the negative control and the staple showed comparable fluorescence for mNeonGreen and mScarlet-I. A small but significant difference was observed for mNeonGreen (p = 0.0416). Importantly the measured FRET signal was significantly higher for the sample compared to the negative control (p < 0.0001). This indicates that the TetR-Oct1 staple successfully brought the two plasmids into close proximity, allowing for FRET to occur.

FRET_TetR-Oct1
Figure 4: Fluorescence Measurement of mNeonGreen, mScarlet-I and FRET. Fluorescence intensity of mNeonGreen (ex. 490 nm, em. 530 nm), mScarlet-I (ex. 560 nm, em. 600 nm), and FRET (ex. 490 nm, em. 600 nm) was measured 18 hours after IPTG induction (0.05 mM) and normalized to cell count (OD600). Statistical significance was determined with Ordinary two-way ANOVA with Šidák's multiple comparison test, with a single pooled variance. *p < 0.05, ****p < 0.001. Data is depicted as mean (n=3) ± SD

4.3 In Silico Characterization using DaVinci

We developed the in silico model DaVinci for rapid engineering and development of our PICasSO system. DaVinci acts as a digital twin to PICasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA. We calibrated DaVinci with literature and our own experimental affinity data calculated from EMSA assays with purified proteins DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged DNA dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the DNA-binding interaction.
The structures shown in Figure 5 were predicted using the AlphaFold server and the protein-DNA interaction further analyzed with all atom dynamics simulations. The depicted structures show favorable DNA binding, and no apparent problems with the fusion protein and DNA binding were detected.

Figure 5: Representations of the Simple Staple Constructs Proteins are shown in full color (top row) and by their predicted structural accuracy during DNA interaction. The linkers were selected based on their structural property providing maximal flexibility. All structures were predicted using the AlphaFold server (Google DeepMind, 2024).

5. Conclusion

The Simple staple (Oct1-DBD-TetR fusion) is a versatile bivalent DNA-binding protein that brings two DNA sequences into close proximity. It was successfully applied to establish a FRET-based assay to monitor DNA-DNA proximity in bacterial systems. The results demonstrate the Simple Staple's functionality in both in vitro and in vivo settings, highlighting its potential for future applications in gene regulation and spatial genome organization.

6. References

Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg2+ Reveals Mechanism of Antibiotic Resistance. Journal of Molecular Biology, 247(2), 260–280. https://doi.org/10.1006/jmbi.1994.0138

Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. Nucleic Acids Research, 31(12), 3050–3056.

Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of Sequence-Specific DNA Binding by the Transcription Factor Oct-1. Biochemistry, 39(25), 7570–7579. https://doi.org/10.1021/bi000377h

Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural Biology, 7(3), 215–219. https://doi.org/10.1038/73324

Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. Journal of Bioscience and Bioengineering, 116(2), 246–252. https://doi.org/10.1016/j.jbiosc.2013.02.005

Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim, S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell Biotransformation Efficiency. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00444

Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., & Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. Scientific Reports, 11(1), 18808. https://doi.org/10.1038/s41598-021-98323-y

Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). Improved single-chain transactivators of the Tet-On gene expression system. BMC Biotechnology, 7, 6. https://doi.org/10.1186/1472-6750-7-6