Difference between revisions of "Part:BBa K5237013"
(5 intermediate revisions by 4 users not shown) | |||
Line 4: | Line 4: | ||
<partinfo>BBa_K5237013</partinfo> | <partinfo>BBa_K5237013</partinfo> | ||
<!--################################--> | <!--################################--> | ||
− | |||
<!--Add changes below---> | <!--Add changes below---> | ||
<html> | <html> | ||
Line 31: | Line 30: | ||
padding: 5px; | padding: 5px; | ||
} | } | ||
+ | |||
.thumbcaption { | .thumbcaption { | ||
− | + | text-align: justify !important; | |
− | + | } | |
− | a[href ^="https://"],.link-https { | + | a[href ^="https://"], |
+ | .link-https { | ||
background: none !important; | background: none !important; | ||
− | padding-right:0px !important; | + | padding-right: 0px !important; |
− | } | + | } |
− | + | ||
</style> | </style> | ||
+ | |||
<body> | <body> | ||
− | + | <!-- Part summary --> | |
− | + | <section> | |
− | + | <h1>Caged NpuC Intein</h1> | |
− | + | <p>The Caged NpuC Intein is derived from the naturally split intein DnaE of the cyanobacterium <i>Nostoc | |
− | + | punctiforme</i>, designed to facilitate controlled protein <i>trans</i>-splicing. By caging the N- and | |
− | + | C-terminal intein fragments (NpuN and NpuC), splicing is inhibited until removal of the cages, allowing precise | |
− | + | regulation of protein linkage. The caged NpuC intein fragment was codon optimized for expression in human cells. | |
− | + | The system enables the conditional assembly of proteins, such as the oligomerization of dead Cas9, via cathepsin | |
− | + | B-mediated cleavage, providing a versatile tool for synthetic biology applications.</p> | |
− | + | </section> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </section> | + | |
− | + | ||
+ | <p> </p> | ||
+ | <div class="toc" id="toc"> | ||
+ | <div id="toctitle"> | ||
+ | <h1>Contents</h1> | ||
+ | </div> | ||
+ | <ul> | ||
+ | <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence | ||
+ | Overview</span></a> | ||
+ | </li> | ||
+ | <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage | ||
+ | and | ||
+ | Biology</span></a> | ||
+ | </li> | ||
+ | <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span | ||
+ | class="toctext">Assembly | ||
+ | and Part Evolution</span></a> | ||
+ | </li> | ||
+ | <li class="toclevel-1 tocsection-8"><a href="#4"><span class="tocnumber">4</span> <span | ||
+ | class="toctext">References</span></a> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </div> | ||
<section> | <section> | ||
− | <p><br><br></p> | + | <p><br /><br /></p> |
<font size="5"><b>The PICasSO Toolbox </b> </font> | <font size="5"><b>The PICasSO Toolbox </b> </font> | ||
− | |||
<div class="thumb" style="margin-top:10px;"></div> | <div class="thumb" style="margin-top:10px;"></div> | ||
− | + | <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage" | |
− | + | src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" | |
− | + | style="width:99%;" /> | |
− | + | <div class="thumbcaption"> | |
+ | <i><b>Figure 1: How our Part Collection Can be Used to Engineer New Staples</b></i> | ||
</div> | </div> | ||
</div> | </div> | ||
− | |||
− | |||
<p> | <p> | ||
− | <br> | + | <br /> |
− | + | While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D | |
− | cell fate, disease development and more. However, | + | spatial organization</b> of DNA is well-known to be an important layer of information encoding in |
− | 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a | + | particular in eukaryotes, playing a crucial role in |
− | toolbox based on various DNA-binding proteins | + | gene regulation and hence |
+ | cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the | ||
+ | genomic spatial | ||
+ | architecture are limited, hampering the exploration of | ||
+ | 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a | ||
+ | <b>powerful | ||
+ | molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on | ||
+ | various DNA-binding proteins. | ||
</p> | </p> | ||
<p> | <p> | ||
The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and | The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and | ||
− | re-programming | + | <b>re-programming |
− | + | of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables | |
− | interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. | + | researchers to recreate naturally occurring alterations of 3D genomic |
− | Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and | + | interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for |
− | testing of new staples | + | artificial gene regulation and cell function control. |
− | + | Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic | |
+ | loci into | ||
+ | spatial proximity. | ||
+ | To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>, | ||
+ | connected either at | ||
+ | the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are | ||
+ | referred to as protein- or Cas staples, respectively. Beyond its | ||
+ | versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to | ||
+ | support the engineering, optimization, and | ||
+ | testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a | ||
+ | design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational | ||
+ | modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized | ||
+ | parts. | ||
</p> | </p> | ||
− | + | <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding | |
− | <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b> | + | proteins</b> |
include our | include our | ||
− | finalized | + | finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as |
− | new Cas staples in the future. We also include our Simple staples | + | "half staples" that can be combined by scientists to compose entirely |
− | and can be further engineered to create alternative, simpler and more compact staples. <br> | + | new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple |
− | <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These | + | and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for |
− | consist of | + | successful stapling |
− | + | and can be further engineered to create alternative, simpler, and more compact staples. <br /> | |
− | + | <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the | |
− | interkingdom conjugation system. <br> | + | functionality of our Cas and |
− | <b>(iii)</b> As the final category of our collection, we provide parts that | + | Basic staples. These |
− | systems</b>. These include components of our established FRET-based proximity assay system, enabling users to | + | consist of staples dependent on |
+ | cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, | ||
+ | dynamic stapling <i>in vivo</i>. | ||
+ | We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into | ||
+ | target cells, including mammalian cells, | ||
+ | with our new | ||
+ | interkingdom conjugation system. <br /> | ||
+ | <b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom | ||
+ | readout | ||
+ | systems</b>. These include components of our established FRET-based proximity assay system, enabling | ||
+ | users to | ||
confirm | confirm | ||
− | accurate stapling. Additionally, we offer a complementary, application-oriented testing system | + | accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a |
− | + | luciferase reporter, which allows for straightforward experimental assessment of functional enhancer | |
+ | hijacking events | ||
+ | in mammalian cells. | ||
</p> | </p> | ||
<p> | <p> | ||
− | The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed | + | The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark |
− | + | style="background-color: #FFD700; color: black;">The highlighted parts showed | |
− | collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their | + | exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other |
− | own custom Cas staples, enabling further optimization and innovation.<br> | + | parts in |
+ | the | ||
+ | collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer | ||
+ | their | ||
+ | own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome | ||
+ | engineering.<br /> | ||
</p> | </p> | ||
<p> | <p> | ||
− | <font size="4"><b>Our part collection includes:</b></font><br> | + | <font size="4"><b>Our part collection includes:</b></font><br /> |
</p> | </p> | ||
− | |||
<table style="width: 90%; padding-right:10px;"> | <table style="width: 90%; padding-right:10px;"> | ||
− | <td | + | <td align="left" colspan="3"><b>DNA-Binding Proteins: </b> |
− | + | Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i> | |
− | + | </td> | |
<tbody> | <tbody> | ||
<tr bgcolor="#FFD700"> | <tr bgcolor="#FFD700"> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td> | ||
− | <td> | + | <td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td> |
− | <td> | + | <td>Entry vector for simple fgRNA cloning via SapI</td> |
</tr> | </tr> | ||
<tr bgcolor="#FFD700"> | <tr bgcolor="#FFD700"> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td> | ||
− | <td>Staple | + | <td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td> |
− | <td>Staple subunit that can be combined with | + | <td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple |
+ | </td> | ||
</tr> | </tr> | ||
<tr bgcolor="#FFD700"> | <tr bgcolor="#FFD700"> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td> | ||
− | <td>Staple | + | <td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td> |
− | <td>Staple subunit that can be combined | + | <td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple |
</td> | </td> | ||
</tr> | </tr> | ||
Line 151: | Line 191: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td> | ||
<td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td> | <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td> | ||
− | <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into | + | <td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into |
+ | close | ||
+ | proximity | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td> | ||
− | <td>Staple | + | <td>Staple Subunit: Oct1-DBD</td> |
− | <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br> | + | <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br /> |
Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td> | ||
− | <td>Staple | + | <td>Staple Subunit: TetR</td> |
− | <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br> | + | <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br /> |
Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td> | ||
− | <td>Simple | + | <td>Simple Staple: TetR-Oct1</td> |
<td>Functional staple that can be used to bring two DNA strands in close proximity</td> | <td>Functional staple that can be used to bring two DNA strands in close proximity</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td> | ||
− | <td>Staple | + | <td>Staple Subunit: GCN4</td> |
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td> | <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td> | ||
− | <td>Staple | + | <td>Staple Subunit: rGCN4</td> |
<td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td> | <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td> | ||
− | <td>Mini | + | <td>Mini Staple: bGCN4</td> |
<td> | <td> | ||
Assembled staple with minimal size that can be further engineered</td> | Assembled staple with minimal size that can be further engineered</td> | ||
</tr> | </tr> | ||
</tbody> | </tbody> | ||
− | <td | + | <td align="left" colspan="3"><b>Functional Elements: </b> |
− | Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization | + | Protease-cleavable peptide linkers and inteins are used to control and modify staples for further |
+ | optimization | ||
for custom applications</td> | for custom applications</td> | ||
<tbody> | <tbody> | ||
Line 195: | Line 238: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td> | ||
<td>Cathepsin B-cleavable Linker: GFLG</td> | <td>Cathepsin B-cleavable Linker: GFLG</td> | ||
− | <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive | + | <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make |
+ | responsive | ||
staples</td> | staples</td> | ||
</tr> | </tr> | ||
Line 201: | Line 245: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td> | ||
<td>Cathepsin B Expression Cassette</td> | <td>Cathepsin B Expression Cassette</td> | ||
− | <td>Expression | + | <td>Expression cassette for the overexpression of cathepsin B</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td> | ||
<td>Caged NpuN Intein</td> | <td>Caged NpuN Intein</td> | ||
− | <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation | + | <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease |
− | + | activation, which can be used to create functionalized staple | |
+ | subunits</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td> | ||
<td>Caged NpuC Intein</td> | <td>Caged NpuC Intein</td> | ||
− | <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation | + | <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease |
− | + | activation, which can be used to create functionalized staple | |
+ | subunits</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td> | ||
− | <td> | + | <td>Fusion Guide RNA Processing Casette</td> |
− | <td>Processing | + | <td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for |
+ | multiplexed 3D | ||
+ | genome reprogramming</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td> | ||
<td>Intimin anti-EGFR Nanobody</td> | <td>Intimin anti-EGFR Nanobody</td> | ||
− | <td> | + | <td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for |
+ | large | ||
constructs</td> | constructs</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td> | ||
+ | <td>IncP Origin of Transfer</td> | ||
+ | <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a | ||
+ | means of | ||
+ | delivery</td> | ||
</tr> | </tr> | ||
</tbody> | </tbody> | ||
− | <td | + | <td align="left" colspan="3"><b>Readout Systems: </b> |
− | FRET and enhancer recruitment to | + | FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and |
− | + | mammalian cells | |
+ | </td> | ||
<tbody> | <tbody> | ||
<tr bgcolor="#FFD700"> | <tr bgcolor="#FFD700"> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td> | ||
<td>FRET-Donor: mNeonGreen-Oct1</td> | <td>FRET-Donor: mNeonGreen-Oct1</td> | ||
− | <td>FRET | + | <td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to |
+ | visualize | ||
+ | DNA-DNA | ||
proximity</td> | proximity</td> | ||
</tr> | </tr> | ||
Line 240: | Line 299: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td> | ||
<td>FRET-Acceptor: TetR-mScarlet-I</td> | <td>FRET-Acceptor: TetR-mScarlet-I</td> | ||
− | <td>Acceptor part for the FRET assay binding the TetR binding cassette | + | <td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize |
+ | DNA-DNA | ||
proximity</td> | proximity</td> | ||
</tr> | </tr> | ||
Line 252: | Line 312: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td> | ||
<td>TetR Binding Cassette</td> | <td>TetR Binding Cassette</td> | ||
− | <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET | + | <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the |
+ | FRET | ||
proximity assay</td> | proximity assay</td> | ||
</tr> | </tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td> | ||
− | <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td> | + | <td>Cathepsin B-Cleavable <i>Trans</i>-Activator: NLS-Gal4-GFLG-VP64</td> |
− | <td>Readout system that responds to protease activity | + | <td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker |
− | </ | + | </td> |
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td> | ||
<td>NLS-Gal4-VP64</td> | <td>NLS-Gal4-VP64</td> | ||
− | <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td> | + | <td><i>Trans</i>-activating enhancer, that can be used to simulate enhancer hijacking</td> |
</tr> | </tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td> | ||
− | <td>mCherry Expression Cassette: UAS, minimal | + | <td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td> |
− | <td>Readout system for enhancer binding | + | <td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td> |
− | + | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td> | ||
− | <td>Oct1 - 5x UAS | + | <td>Oct1 - 5x UAS Binding Casette</td> |
<td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td> | <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td> | ||
− | <td>TRE-minimal | + | <td>TRE-minimal Promoter- Firefly Luciferase</td> |
− | <td>Contains | + | <td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence |
+ | readout for | ||
simulated enhancer hijacking</td> | simulated enhancer hijacking</td> | ||
</tr> | </tr> | ||
</tbody> | </tbody> | ||
</table> | </table> | ||
− | |||
</section> | </section> | ||
− | |||
<section id="1"> | <section id="1"> | ||
<h1>1. Sequence Overview</h1> | <h1>1. Sequence Overview</h1> | ||
Line 290: | Line 349: | ||
</html> | </html> | ||
− | |||
<!--################################--> | <!--################################--> | ||
<!--The followig lines need to be adjusted for each part (exchange hashes for part number)--> | <!--The followig lines need to be adjusted for each part (exchange hashes for part number)--> | ||
− | <span class= | + | <span class="h3bb">Sequence and Features</span> |
<partinfo>BBa_K5237013 SequenceAndFeatures</partinfo> | <partinfo>BBa_K5237013 SequenceAndFeatures</partinfo> | ||
<!--################################--> | <!--################################--> | ||
+ | <html> | ||
− | |||
− | |||
− | |||
<body> | <body> | ||
<section id="2"> | <section id="2"> | ||
<h1>2. Usage and Biology</h1> | <h1>2. Usage and Biology</h1> | ||
− | <p>Inteins are protein sequences that splice themselves out of a polypeptide chain through an autocatalytic cleavage reaction. This process ligates the flanking polypeptides, termed exteins (Mills, Johnson & Perler, 2014; Wang <i>et al.</i>, 2022). Some inteins are naturally split in two parts – termed N- and C-terminal intein fragments. <i>Trans</i>-splicing of two split intein fragments can covalently link two different proteins (Ventura & Mootz, 2019).<br> | + | <p>Inteins are protein sequences that splice themselves out of a polypeptide chain through an autocatalytic cleavage |
− | The naturally split intein DnaE from the cyanobacterium <i>Nostoc punctiforme</i> (Npu) was previously utilized to link different protein fragments in prokaryotic and eukaryotic systems (Gramespacher <i>et al.</i>, 2017). DnaE consists of the NpuN and NpuC intein fragments. Caging of NpuN and NpuC with truncated fragments of the opposite intein fragment inhibits protein <i>trans</i>-splicing. This allows for the controlled induction of protein <i>trans</i>-splicing upon removal of the intein cages (Gramespacher <i>et al.</i>, 2017). Here, we utilized NpuN and NpuC to induce linkage of dead Cas9 (dCas9) proteins upon removal of intein cages by cathepsin B cleavage.</p> | + | reaction. This process ligates the flanking polypeptides, termed exteins (Mills, Johnson & Perler, 2014; Wang |
− | + | <i>et al.</i>, 2022). Some inteins are naturally split in two parts – termed N- and C-terminal intein fragments. | |
+ | <i>Trans</i>-splicing of two split intein fragments can covalently link two different proteins (Ventura & | ||
+ | Mootz, 2019).<br /> | ||
+ | The naturally split intein DnaE from the cyanobacterium <i>Nostoc punctiforme</i> (Npu) was previously utilized to | ||
+ | link different protein fragments in prokaryotic and eukaryotic systems (Gramespacher <i>et al.</i>, 2017). DnaE | ||
+ | consists of the NpuN and NpuC intein fragments. Caging of NpuN and NpuC with truncated fragments of the opposite | ||
+ | intein fragment inhibits protein <i>trans</i>-splicing. This allows for the controlled induction of protein | ||
+ | <i>trans</i>-splicing upon removal of the intein cages (Gramespacher <i>et al.</i>, 2017). Here, we utilized NpuN | ||
+ | and NpuC to induce linkage of dead Cas9 (dCas9) proteins upon removal of intein cages by cathepsin B cleavage.</p> | ||
</section> | </section> | ||
<section id="3"> | <section id="3"> | ||
<h1>3. Assembly and Part Evolution</h1> | <h1>3. Assembly and Part Evolution</h1> | ||
− | <p>The sequence for NpuC was taken from Gramespacher <i>et al.</i> (2017) and optimized for expression in human cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.).<br> | + | <p>The sequence for NpuC was taken from Gramespacher <i>et al.</i> (2017) and optimized for expression in human |
− | The protein sequence of NpuN<sub>51-102</sub> was taken from Gramespacher <i>et al.</i> (2017). The nucleotide sequence was codon optimized for expression in human cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.).</p> | + | cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.).<br /> |
− | </section> | + | The protein sequence of NpuN<sub>51-102</sub> was taken from Gramespacher <i>et al.</i> (2017). The nucleotide |
− | + | sequence was codon optimized for expression in human cells (Codon Optimization Tool from Integrated DNA | |
+ | Technologies, Inc.).</p> | ||
+ | </section> | ||
<section id="4"> | <section id="4"> | ||
<h1>4. References</h1> | <h1>4. References</h1> | ||
− | <p> | + | <p> |
− | Gramespacher, J. A., Stevens, A. J., | + | Gramespacher, J. A., Stevens, A. J., Nguyen, D. P., Chin, J. W., & Muir, T. W. (2017). Intein Zymogens: |
− | href="https://doi.org/10.1021/jacs.7b02618" target="_blank">https://doi.org/10.1021/jacs.7b02618</a> | + | Conditional Assembly and Splicing of Split Inteins via Targeted Proteolysis. J Am Chem Soc, 139(24), 8074-8077. <a |
− | </p> | + | href="https://doi.org/10.1021/jacs.7b02618" target="_blank">https://doi.org/10.1021/jacs.7b02618</a> |
− | <p> | + | </p> |
− | Mills, K. V., Johnson, M. A., & Perler, F. B. (2014). Protein Splicing: How Inteins Escape from Precursor Proteins. Journal of Biological Chemistry, 289(21), 14498-14505. <a | + | <p> |
− | + | Mills, K. V., Johnson, M. A., & Perler, F. B. (2014). Protein Splicing: How Inteins Escape from Precursor | |
− | </p> | + | Proteins. Journal of Biological Chemistry, 289(21), 14498-14505. <a href="https://doi.org/10.1074/jbc.R113.540310" |
− | <p> | + | target="_blank">https://doi.org/10.1074/jbc.R113.540310</a> |
− | Ventura, B. D., & Mootz, H. D. (2019). Switchable inteins for conditional protein splicing. Biological Chemistry, 400(4), 467-475. <a | + | </p> |
− | + | <p> | |
− | </p> | + | Ventura, B. D., & Mootz, H. D. (2019). Switchable inteins for conditional protein splicing. Biological |
− | <p> | + | Chemistry, 400(4), 467-475. <a href="https://doi.org/doi:10.1515/hsz-2018-0309" |
− | Wang, H., Wang, L., Zhong, B., & Dai, Z. (2022). Protein Splicing of Inteins: A Powerful Tool in Synthetic Biology [Mini Review]. Frontiers in Bioengineering and Biotechnology, 10. <a | + | target="_blank">https://doi.org/doi:10.1515/hsz-2018-0309</a> |
+ | </p> | ||
+ | <p> | ||
+ | Wang, H., Wang, L., Zhong, B., & Dai, Z. (2022). Protein Splicing of Inteins: A Powerful Tool in Synthetic | ||
+ | Biology [Mini Review]. Frontiers in Bioengineering and Biotechnology, 10. <a | ||
href="https://doi.org/10.3389/fbioe.2022.810180" target="_blank">https://doi.org/10.3389/fbioe.2022.810180</a> | href="https://doi.org/10.3389/fbioe.2022.810180" target="_blank">https://doi.org/10.3389/fbioe.2022.810180</a> | ||
− | </p> | + | </p> |
</section> | </section> | ||
</body> | </body> | ||
</html> | </html> |
Latest revision as of 11:50, 2 October 2024
Caged NpuC Intein
The Caged NpuC Intein is derived from the naturally split intein DnaE of the cyanobacterium Nostoc punctiforme, designed to facilitate controlled protein trans-splicing. By caging the N- and C-terminal intein fragments (NpuN and NpuC), splicing is inhibited until removal of the cages, allowing precise regulation of protein linkage. The caged NpuC intein fragment was codon optimized for expression in human cells. The system enables the conditional assembly of proteins, such as the oligomerization of dead Cas9, via cathepsin B-mediated cleavage, providing a versatile tool for synthetic biology applications.
While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D
spatial organization of DNA is well-known to be an important layer of information encoding in
particular in eukaryotes, playing a crucial role in
gene regulation and hence
cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
genomic spatial
architecture are limited, hampering the exploration of
3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
powerful
molecular toolbox for rationally engineering genome 3D architectures in living cells, based on
various DNA-binding proteins.
The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.
At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding
proteins
include our
finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
"half staples" that can be combined by scientists to compose entirely
new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
successful stapling
and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the
functionality of our Cas and
Basic staples. These
consist of staples dependent on
cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
dynamic stapling in vivo.
We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
target cells, including mammalian cells,
with our new
interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom
readout
systems. These include components of our established FRET-based proximity assay system, enabling
users to
confirm
accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
hijacking events
in mammalian cells.
The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed
exceptional performance as described on our iGEM wiki and can serve as a reference. The other
parts in
the
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
their
own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
engineering.
Our part collection includes:
DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo | ||
BBa_K5237000 | Fusion Guide RNA Entry Vector MbCas12a-SpCas9 | Entry vector for simple fgRNA cloning via SapI |
BBa_K5237001 | Staple Subunit: dMbCas12a-Nucleoplasmin NLS | Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple |
BBa_K5237002 | Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS | Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple |
BBa_K5237003 | Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS | Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity |
BBa_K5237004 | Staple Subunit: Oct1-DBD | Staple subunit that can be combined to form a functional staple, for example with TetR. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237005 | Staple Subunit: TetR | Staple subunit that can be combined to form a functional staple, for example with Oct1. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237006 | Simple Staple: TetR-Oct1 | Functional staple that can be used to bring two DNA strands in close proximity |
BBa_K5237007 | Staple Subunit: GCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237008 | Staple Subunit: rGCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237009 | Mini Staple: bGCN4 | Assembled staple with minimal size that can be further engineered | Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications |
BBa_K5237010 | Cathepsin B-cleavable Linker: GFLG | Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples |
BBa_K5237011 | Cathepsin B Expression Cassette | Expression cassette for the overexpression of cathepsin B |
BBa_K5237012 | Caged NpuN Intein | A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237013 | Caged NpuC Intein | A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237014 | Fusion Guide RNA Processing Casette | Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming |
BBa_K5237015 | Intimin anti-EGFR Nanobody | Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs |
BBa_K4643003 | IncP Origin of Transfer | Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery | Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells |
BBa_K5237016 | FRET-Donor: mNeonGreen-Oct1 | FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237017 | FRET-Acceptor: TetR-mScarlet-I | Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237018 | Oct1 Binding Casette | DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay |
BBa_K5237019 | TetR Binding Cassette | DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay | BBa_K5237020 | Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 | Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker |
BBa_K5237021 | NLS-Gal4-VP64 | Trans-activating enhancer, that can be used to simulate enhancer hijacking | BBa_K5237022 | mCherry Expression Cassette: UAS, minimal Promoter, mCherry | Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker |
BBa_K5237023 | Oct1 - 5x UAS Binding Casette | Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay |
BBa_K5237024 | TRE-minimal Promoter- Firefly Luciferase | Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking |
1. Sequence Overview
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
2. Usage and Biology
Inteins are protein sequences that splice themselves out of a polypeptide chain through an autocatalytic cleavage
reaction. This process ligates the flanking polypeptides, termed exteins (Mills, Johnson & Perler, 2014; Wang
et al., 2022). Some inteins are naturally split in two parts – termed N- and C-terminal intein fragments.
Trans-splicing of two split intein fragments can covalently link two different proteins (Ventura &
Mootz, 2019).
The naturally split intein DnaE from the cyanobacterium Nostoc punctiforme (Npu) was previously utilized to
link different protein fragments in prokaryotic and eukaryotic systems (Gramespacher et al., 2017). DnaE
consists of the NpuN and NpuC intein fragments. Caging of NpuN and NpuC with truncated fragments of the opposite
intein fragment inhibits protein trans-splicing. This allows for the controlled induction of protein
trans-splicing upon removal of the intein cages (Gramespacher et al., 2017). Here, we utilized NpuN
and NpuC to induce linkage of dead Cas9 (dCas9) proteins upon removal of intein cages by cathepsin B cleavage.
3. Assembly and Part Evolution
The sequence for NpuC was taken from Gramespacher et al. (2017) and optimized for expression in human
cells (Codon Optimization Tool from Integrated DNA Technologies, Inc.).
The protein sequence of NpuN51-102 was taken from Gramespacher et al. (2017). The nucleotide
sequence was codon optimized for expression in human cells (Codon Optimization Tool from Integrated DNA
Technologies, Inc.).
4. References
Gramespacher, J. A., Stevens, A. J., Nguyen, D. P., Chin, J. W., & Muir, T. W. (2017). Intein Zymogens: Conditional Assembly and Splicing of Split Inteins via Targeted Proteolysis. J Am Chem Soc, 139(24), 8074-8077. https://doi.org/10.1021/jacs.7b02618
Mills, K. V., Johnson, M. A., & Perler, F. B. (2014). Protein Splicing: How Inteins Escape from Precursor Proteins. Journal of Biological Chemistry, 289(21), 14498-14505. https://doi.org/10.1074/jbc.R113.540310
Ventura, B. D., & Mootz, H. D. (2019). Switchable inteins for conditional protein splicing. Biological Chemistry, 400(4), 467-475. https://doi.org/doi:10.1515/hsz-2018-0309
Wang, H., Wang, L., Zhong, B., & Dai, Z. (2022). Protein Splicing of Inteins: A Powerful Tool in Synthetic Biology [Mini Review]. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.810180