Difference between revisions of "Part:BBa K5115038"

 
(11 intermediate revisions by one other user not shown)
Line 3: Line 3:
 
<partinfo>BBa_K5115038 short</partinfo>
 
<partinfo>BBa_K5115038 short</partinfo>
  
<html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2023"></html>
+
<html><img style="float:right;width:128px" src="https://static.igem.wiki/teams/5115/czh/mineral-logo.svg" alt="contributed by Fudan iGEM 2024"></html>
 
__TOC__
 
__TOC__
 
===Introduction===
 
===Introduction===
This composite part combines [https://parts.igem.org/Part:BBa_K5115035 BBa_K5115035(ribozyme+RBS+MTA+stem-loop)], BBa_K5115036(ribozyme+RBS+hpn+stem-loop)and BBa_K5115033(ribozyme+RBS+RcnR_C35L+stem-loop) . We introduced this ribozyme-assisted polycistronic co-expression system in [2022](https://2022.igem.wiki/fudan/parts). By inserting [ribozyme sequences](https://parts.igem.org/Part:BBa_K4765020) between CDSs in a polycistron, the RNA sequences of Twister ribozyme conduct self-cleaving, and the polycistronic mRNA transcript is thus co-transcriptionally converted into individual mono-cistrons *in vivo*.
+
This composite part combines [https://parts.igem.org/Part:BBa_K5115035 BBa_K5115035(ribozyme+RBS+MTA+stem-loop)], [https://parts.igem.org/Part:BBa_K5115036 BBa_K5115036(ribozyme+RBS+Hpn+stem-loop)]and [https://parts.igem.org/Part:BBa_K5115033 BBa_K5115033(ribozyme+RBS+RcnR_C35L+stem-loop)] . We introduced this ribozyme-assisted polycistronic co-expression system from [https://2022.igem.wiki/fudan/parts 2022]. By inserting [https://parts.igem.org/Part:BBa_K4765020 ribozyme sequences] between CDSs in a polycistron, the RNA sequences of Twister ribozyme conduct self-cleaving, and the polycistronic mRNA transcript is thus co-transcriptionally converted into individual mono-cistrons ''in vivo''.
  
With this design, we achieve co-expression of [MTA](https://parts.igem.org/Part:BBa_K5115050), Hpn 没有它的basic, [RcnR C35L](https://parts.igem.org/Part:BBa_K5115000) at similar level. MTA is a protein that can bind with nickel ions to reduce its toxity to the *E.coli*. The Hpn is a protein that can sequester metals that accumulate internally to reduce nickel's toxity to the *E.coli*. RcnR C35L can regulate the nickel ion channel proteins in the cell membrane to tune the nickel ion transport rate.
+
With this design, we achieve co-expression of [https://parts.igem.org/Part:BBa_K5115050 MTA], [https://parts.igem.org/Part:BBa_K1151001 Hpn], [https://parts.igem.org/Part:BBa_K5115000 RcnR_C35L] at similar level. MTA is a protein that can bind with nickel ions to reduce its toxicity to the ''E.coli''. The Hpn is a protein that can sequester metals that accumulate internally to reduce nickel's toxicity to the ''E.coli''. RcnR_C35L can regulate the nickel ion channel proteins in the cell membrane to tune the nickel ion transport rate.
 +
 
 +
===Usage and Biology===
 +
This part is eventually chosen as a component of [https://parts.igem.org/Part:BBa_K5115068 mineral nickel module], tuning the nickel ion transport rate and reducing nickel's toxicity to the ''E.coli''.
  
 
===Characterization===
 
===Characterization===
 +
{|
 +
| <html><img style="width:400px" src="https://static.igem.wiki/teams/5115/ni-results/3-composites.png" alt="contributed by Fudan iGEM 2024"></html>
 +
|-
 +
| '''Figure 1. Comparison of Ni²⁺ Uptake Efficiency by Different ''E. coli'' in 50 mg/L Ni²⁺. 
 +
The graph shows the percentage of Ni²⁺ absorbed by ''E. coli'' expressing different constructs after 5 hours of growth in a medium containing 50 mg/L Ni²⁺ (''E. coli'' strain: BL21 DE3, leaky expression, no IPTG induction). Ni²⁺ uptake was calculated based on the difference between initial and final concentrations in the supernatant, divided by 50 mg/L. The optical density (OD₆₀₀) of the initial bacterial suspension was adjusted to 0.5. Culture at 37°C with a rotating speed at 220 rpm. With out parts for Ni²⁺ uptake, there was no significant difference in the efficiency of nickel absorption between the modified ''E. coli'' and control.
 +
'''
  
 +
|}
  
 +
===Sequence and Features===
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>

Latest revision as of 11:06, 2 October 2024


ribozyme connected: MTA, Hpn, RcnR_C35L

contributed by Fudan iGEM 2024

Introduction

This composite part combines BBa_K5115035(ribozyme+RBS+MTA+stem-loop), BBa_K5115036(ribozyme+RBS+Hpn+stem-loop)and BBa_K5115033(ribozyme+RBS+RcnR_C35L+stem-loop) . We introduced this ribozyme-assisted polycistronic co-expression system from 2022. By inserting ribozyme sequences between CDSs in a polycistron, the RNA sequences of Twister ribozyme conduct self-cleaving, and the polycistronic mRNA transcript is thus co-transcriptionally converted into individual mono-cistrons in vivo.

With this design, we achieve co-expression of MTA, Hpn, RcnR_C35L at similar level. MTA is a protein that can bind with nickel ions to reduce its toxicity to the E.coli. The Hpn is a protein that can sequester metals that accumulate internally to reduce nickel's toxicity to the E.coli. RcnR_C35L can regulate the nickel ion channel proteins in the cell membrane to tune the nickel ion transport rate.

Usage and Biology

This part is eventually chosen as a component of mineral nickel module, tuning the nickel ion transport rate and reducing nickel's toxicity to the E.coli.

Characterization

contributed by Fudan iGEM 2024
Figure 1. Comparison of Ni²⁺ Uptake Efficiency by Different E. coli in 50 mg/L Ni²⁺.

The graph shows the percentage of Ni²⁺ absorbed by E. coli expressing different constructs after 5 hours of growth in a medium containing 50 mg/L Ni²⁺ (E. coli strain: BL21 DE3, leaky expression, no IPTG induction). Ni²⁺ uptake was calculated based on the difference between initial and final concentrations in the supernatant, divided by 50 mg/L. The optical density (OD₆₀₀) of the initial bacterial suspension was adjusted to 0.5. Culture at 37°C with a rotating speed at 220 rpm. With out parts for Ni²⁺ uptake, there was no significant difference in the efficiency of nickel absorption between the modified E. coli and control.

Sequence and Features

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 935
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 198
  • 1000
    COMPATIBLE WITH RFC[1000]


References