Difference between revisions of "Part:BBa K5237023"
Line 37: | Line 37: | ||
padding-right: 0px !important; | padding-right: 0px !important; | ||
} | } | ||
+ | |||
</style> | </style> | ||
− | |||
<body> | <body> | ||
− | + | <!-- Part summary --> | |
− | + | <section id="1"> | |
− | + | <h1>Oct1 binding casette 5x UAS</h1> | |
− | + | <p>This part contains three times Oct1 recognition sites (BBa_K5237018) and five times an upstream activating | |
sequence (UAS). With these two sequences available we can facilitate binding of Oct1 and Gal4, utilized in our | sequence (UAS). With these two sequences available we can facilitate binding of Oct1 and Gal4, utilized in our | ||
simulated enhancer hijacking using the transactivator fusion protein NLS-Gal4-VP64 (BBa_K5237014). Firefly | simulated enhancer hijacking using the transactivator fusion protein NLS-Gal4-VP64 (BBa_K5237014). Firefly | ||
luciferase will be expressed through Cas staple induced proximity of the transactivator. | luciferase will be expressed through Cas staple induced proximity of the transactivator. | ||
</p> | </p> | ||
− | + | <p> </p> | |
− | + | </section> | |
− | + | <div class="toc" id="toc"> | |
− | + | <div id="toctitle"> | |
− | + | <h1>Contents</h1> | |
− | + | </div> | |
− | + | <ul> | |
− | + | <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence | |
overview</span></a> | overview</span></a> | ||
− | + | </li> | |
− | + | <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and | |
Biology</span></a> | Biology</span></a> | ||
− | + | </li> | |
− | + | <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly | |
and part evolution</span></a> | and part evolution</span></a> | ||
− | + | </li> | |
− | + | <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span class="toctext">Results</span></a> | |
− | + | </li> | |
− | + | <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span class="toctext">References</span></a> | |
− | + | </li> | |
− | + | </ul> | |
− | + | </div> | |
− | + | <section><p><br/><br/></p> | |
− | + | <font size="5"><b>The PICasSO Toolbox </b> </font> | |
− | + | <div class="thumb" style="margin-top:10px;"></div> | |
− | + | <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;"/> | |
− | + | <div class="thumbcaption"> | |
− | + | <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i> | |
− | + | </div> | |
− | + | </div> | |
− | + | <p> | |
− | + | <br/> | |
− | + | While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D | |
− | + | spatial organization</b> of DNA is well-known to be an important layer of information encoding in | |
− | + | particular in eukaryotes, playing a crucial role in | |
− | + | gene regulation and hence | |
− | + | cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the | |
− | + | genomic spatial | |
− | + | architecture are limited, hampering the exploration of | |
− | + | 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a | |
− | + | <b>powerful | |
− | + | molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on | |
− | regulation | + | various DNA-binding proteins. |
− | cell fate, disease development and more. However, | + | |
− | + | ||
− | 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a | + | |
− | toolbox based on various DNA-binding proteins | + | |
</p> | </p> | ||
− | + | <p> | |
The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and | The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and | ||
− | re-programming | + | <b>re-programming |
− | + | of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables | |
− | interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. | + | researchers to recreate naturally occurring alterations of 3D genomic |
− | Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and | + | interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for |
− | testing of new staples | + | artificial gene regulation and cell function control. |
− | + | Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic | |
+ | loci into | ||
+ | spatial proximity. | ||
+ | To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>, | ||
+ | connected either at | ||
+ | the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are | ||
+ | referred to as protein- or Cas staples, respectively. Beyond its | ||
+ | versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to | ||
+ | support the engineering, optimization, and | ||
+ | testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a | ||
+ | design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational | ||
+ | modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized | ||
+ | parts. | ||
</p> | </p> | ||
− | + | <p>At its heart, the PICasSO part collection consists of three categories. <br/><b>(i)</b> Our <b>DNA-binding | |
− | + | ||
proteins</b> | proteins</b> | ||
include our | include our | ||
− | finalized | + | finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as |
− | new Cas staples in the future. We also include our Simple staples | + | "half staples" that can be combined by scientists to compose entirely |
− | and can be further engineered to create alternative, simpler and more compact staples. <br> | + | new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple |
− | + | and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for | |
+ | successful stapling | ||
+ | and can be further engineered to create alternative, simpler, and more compact staples. <br/> | ||
+ | <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the | ||
+ | functionality of our Cas and | ||
Basic staples. These | Basic staples. These | ||
− | consist of | + | consist of staples dependent on |
− | + | cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, | |
− | + | dynamic stapling <i>in vivo</i>. | |
− | with our | + | We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into |
− | interkingdom conjugation system. <br> | + | target cells, including mammalian cells, |
− | + | with our new | |
+ | interkingdom conjugation system. <br/> | ||
+ | <b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom | ||
readout | readout | ||
− | systems</b>. These include components of our established FRET-based proximity assay system, enabling users to | + | systems</b>. These include components of our established FRET-based proximity assay system, enabling |
+ | users to | ||
confirm | confirm | ||
− | accurate stapling. Additionally, we offer a complementary, application-oriented testing system | + | accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a |
− | + | luciferase reporter, which allows for straightforward experimental assessment of functional enhancer | |
+ | hijacking events | ||
in mammalian cells. | in mammalian cells. | ||
</p> | </p> | ||
− | + | <p> | |
− | The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark | + | The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed |
− | + | exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other | |
− | exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in | + | parts in |
the | the | ||
− | collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their | + | collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer |
− | own custom Cas staples, enabling further optimization and innovation.<br> | + | their |
− | + | own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome | |
− | + | engineering.<br/> | |
− | + | </p> | |
− | + | <p> | |
− | + | <font size="4"><b>Our part collection includes:</b></font><br/> | |
− | + | </p> | |
− | + | <table style="width: 90%; padding-right:10px;"> | |
− | + | <td align="left" colspan="3"><b>DNA-Binding Proteins: </b> | |
− | + | Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i></td> | |
− | + | <tbody> | |
− | + | <tr bgcolor="#FFD700"> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td> | |
− | + | <td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td> | |
− | + | <td>Entry vector for simple fgRNA cloning via SapI</td> | |
− | + | </tr> | |
− | + | <tr bgcolor="#FFD700"> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td> | |
− | + | <td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td> | |
− | + | <td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple | |
− | + | </td> | |
− | + | </tr> | |
− | + | <tr bgcolor="#FFD700"> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td> | |
− | + | <td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td> | |
+ | <td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple | ||
</td> | </td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td> | |
− | + | <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td> | |
− | + | <td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into | |
+ | close | ||
proximity | proximity | ||
</td> | </td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td> | |
− | + | <td>Staple Subunit: Oct1-DBD</td> | |
− | + | <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br/> | |
Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td> | |
− | + | <td>Staple Subunit: TetR</td> | |
− | + | <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br/> | |
Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td> | |
− | + | <td>Simple Staple: TetR-Oct1</td> | |
− | + | <td>Functional staple that can be used to bring two DNA strands in close proximity</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td> | |
− | + | <td>Staple Subunit: GCN4</td> | |
− | + | <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td> | |
− | + | <td>Staple Subunit: rGCN4</td> | |
− | + | <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td> | |
− | + | <td>Mini Staple: bGCN4</td> | |
− | + | <td> | |
Assembled staple with minimal size that can be further engineered</td> | Assembled staple with minimal size that can be further engineered</td> | ||
− | + | </tr> | |
− | + | </tbody> | |
− | + | <td align="left" colspan="3"><b>Functional Elements: </b> | |
− | Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization | + | Protease-cleavable peptide linkers and inteins are used to control and modify staples for further |
+ | optimization | ||
for custom applications</td> | for custom applications</td> | ||
− | + | <tbody> | |
− | + | <tr bgcolor="#FFD700"> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td> | |
− | + | <td>Cathepsin B-cleavable Linker: GFLG</td> | |
− | + | <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make | |
+ | responsive | ||
staples</td> | staples</td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td> | |
− | + | <td>Cathepsin B Expression Cassette</td> | |
− | + | <td>Expression cassette for the overexpression of cathepsin B</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td> | |
− | + | <td>Caged NpuN Intein</td> | |
− | + | <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease | |
− | + | activation, which can be used to create functionalized staple | |
− | + | subunits</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td> | |
− | + | <td>Caged NpuC Intein</td> | |
− | + | <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease | |
− | + | activation, which can be used to create functionalized staple | |
− | + | subunits</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td> | |
− | + | <td>Fusion Guide RNA Processing Casette</td> | |
− | + | <td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for | |
− | genome | + | multiplexed 3D |
− | + | genome reprogramming</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td> | |
− | + | <td>Intimin anti-EGFR Nanobody</td> | |
+ | <td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for | ||
+ | large | ||
constructs</td> | constructs</td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td> | |
− | + | <td>IncP Origin of Transfer</td> | |
− | + | <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a | |
+ | means of | ||
delivery</td> | delivery</td> | ||
− | + | </tr> | |
− | + | </tbody> | |
− | + | <td align="left" colspan="3"><b>Readout Systems: </b> | |
− | FRET and enhancer recruitment to | + | FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and |
− | + | mammalian cells | |
− | + | </td> | |
− | + | <tbody> | |
− | + | <tr bgcolor="#FFD700"> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td> | |
− | + | <td>FRET-Donor: mNeonGreen-Oct1</td> | |
+ | <td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to | ||
+ | visualize | ||
DNA-DNA | DNA-DNA | ||
proximity</td> | proximity</td> | ||
− | + | </tr> | |
− | + | <tr bgcolor="#FFD700"> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td> | |
− | + | <td>FRET-Acceptor: TetR-mScarlet-I</td> | |
− | + | <td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize | |
+ | DNA-DNA | ||
proximity</td> | proximity</td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td> | |
− | + | <td>Oct1 Binding Casette</td> | |
− | + | <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET | |
proximity assay</td> | proximity assay</td> | ||
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td> | |
− | + | <td>TetR Binding Cassette</td> | |
− | + | <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the | |
+ | FRET | ||
proximity assay</td> | proximity assay</td> | ||
− | + | </tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td> | |
− | + | <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td> | |
− | + | <td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker | |
− | </ | + | </td> |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td> | |
− | + | <td>NLS-Gal4-VP64</td> | |
− | + | <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td> | |
− | + | </tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td> | |
− | + | <td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td> | |
− | + | <td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td> | |
− | + | <td>Oct1 - 5x UAS Binding Casette</td> | |
− | + | <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td> | |
− | + | </tr> | |
− | + | <tr> | |
− | + | <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td> | |
− | + | <td>TRE-minimal Promoter- Firefly Luciferase</td> | |
− | + | <td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence | |
− | + | readout for | |
simulated enhancer hijacking</td> | simulated enhancer hijacking</td> | ||
− | + | </tr> | |
− | + | </tbody> | |
− | + | </table></section> | |
− | + | <section id="1"> | |
− | + | <h1>1. Sequence overview</h1> | |
− | + | </section> | |
− | + | ||
− | + | ||
</body> | </body> | ||
− | |||
</html> | </html> | ||
− | |||
<!--################################--> | <!--################################--> | ||
− | <span class= | + | <span class="h3bb">Sequence and Features</span> |
<partinfo>BBa_K5237023 SequenceAndFeatures</partinfo> | <partinfo>BBa_K5237023 SequenceAndFeatures</partinfo> | ||
<!--################################--> | <!--################################--> | ||
− | |||
<html> | <html> | ||
− | |||
− | |||
<section id="2"> | <section id="2"> | ||
− | + | <h1>2. Usage and Biology</h1> | |
− | + | <p> | |
Gal4 is a well-known transcription factor from Saccharomyces cerevisiae that binds specifically to UAS regions on | Gal4 is a well-known transcription factor from Saccharomyces cerevisiae that binds specifically to UAS regions on | ||
DNA, activating transcription of downstream genes. Its DNA-binding domain has been widely utilized in synthetic | DNA, activating transcription of downstream genes. Its DNA-binding domain has been widely utilized in synthetic | ||
biology and gene regulation studies due to its specificity and ability to recruit transcriptional machinery | biology and gene regulation studies due to its specificity and ability to recruit transcriptional machinery | ||
− | (Kakidani and Ptashne 1988).<br> | + | (Kakidani and Ptashne 1988).<br/> |
Oct-1 is a key transcription factor that regulates the transcription of the histone H2B gene and various | Oct-1 is a key transcription factor that regulates the transcription of the histone H2B gene and various | ||
housekeeping genes involved in the cell cycle. As cells transition into mitosis, Oct-1 undergoes | housekeeping genes involved in the cell cycle. As cells transition into mitosis, Oct-1 undergoes | ||
Line 334: | Line 353: | ||
phosphorylation is linked to a reduction in Oct-1's DNA-binding ability, both in vivo and in vitro, suggesting that | phosphorylation is linked to a reduction in Oct-1's DNA-binding ability, both in vivo and in vitro, suggesting that | ||
phosphorylation of Oct-1 may contribute to the overall inhibition of transcription that occurs during mitosis ( | phosphorylation of Oct-1 may contribute to the overall inhibition of transcription that occurs during mitosis ( | ||
− | Segil <i>et al.</i> (1991)).<br> | + | Segil <i>et al.</i> (1991)).<br/> |
We utilize these two recognition sites for plasmid to plasmid stapling with our Cas staples. A fgRNA targeting Oct1 | We utilize these two recognition sites for plasmid to plasmid stapling with our Cas staples. A fgRNA targeting Oct1 | ||
and Tre on the other plasmid, is the key factor in the Cas staple, bringing them together. When the transactivator, | and Tre on the other plasmid, is the key factor in the Cas staple, bringing them together. When the transactivator, | ||
Line 342: | Line 361: | ||
</section> | </section> | ||
<section id="3"> | <section id="3"> | ||
− | + | <h1>3. Assembly and part evolution</h1> | |
− | + | <p> | |
The cloning strategy designed for Oct1 allows for the easy assembly of repetitive repeats. It follows the procedure | The cloning strategy designed for Oct1 allows for the easy assembly of repetitive repeats. It follows the procedure | ||
outlined by Sladitschek and Neveu (2015). Briefly, the oligos can be inserted into a vector digested with SalI and | outlined by Sladitschek and Neveu (2015). Briefly, the oligos can be inserted into a vector digested with SalI and | ||
Line 360: | Line 379: | ||
</section> | </section> | ||
<section id="4"> | <section id="4"> | ||
− | + | <h1>4. Results</h1> | |
− | + | <p> | |
We were able to show our enhancer plasmid to work great with the Cas staples and the reporter plasmid. For the whole | We were able to show our enhancer plasmid to work great with the Cas staples and the reporter plasmid. For the whole | ||
assay, the enhancer plasmid and a reporter plasmid was used. The reporter plasmid has firefly luciferase behind | assay, the enhancer plasmid and a reporter plasmid was used. The reporter plasmid has firefly luciferase behind | ||
several repeats of a Cas9 targeted sequence. The enhancer plasmid has the Oct1 being targeted by Cas12a. By | several repeats of a Cas9 targeted sequence. The enhancer plasmid has the Oct1 being targeted by Cas12a. By | ||
− | introducing a fgRNA staple (BBa_K5237000) and a Gal4-VP64 (<a href="https://parts.igem.org/Part:BBa_K5237021">BBa_K5237021</a>), expression of the luciferase is induced<br> | + | introducing a fgRNA staple (BBa_K5237000) and a Gal4-VP64 (<a href="https://parts.igem.org/Part:BBa_K5237021">BBa_K5237021</a>), expression of the luciferase is induced<br/> |
Cells were again normalized against ubiquitous renilla expression. | Cells were again normalized against ubiquitous renilla expression. | ||
Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (see | Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (see | ||
Line 372: | Line 391: | ||
transactivation when hijacking an enhancer/activator. | transactivation when hijacking an enhancer/activator. | ||
<div class="thumb"> | <div class="thumb"> | ||
− | + | <div class="thumbinner" style="width:60%;"> | |
− | + | <img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/results-eh-2.svg" style="width:99%;"/> | |
− | + | <div class="thumbcaption"> | |
− | + | <i> | |
− | + | <b>Figure 2: Applying Fusion Guide RNAs for Cas staples.</b> <b>A</b>, schematic overview of the assay. | |
− | + | ||
An enhancer | An enhancer | ||
plasmid and a reporter plasmid are brought into proximity by a fgRNA Cas staple complex binding both | plasmid and a reporter plasmid are brought into proximity by a fgRNA Cas staple complex binding both | ||
Line 393: | Line 411: | ||
to 40 nt. | to 40 nt. | ||
</i> | </i> | ||
− | + | </div> | |
− | + | </div> | |
− | + | </div> | |
− | + | </p> | |
</section> | </section> | ||
<section id="5"> | <section id="5"> | ||
− | + | <h1>5. References</h1> | |
− | + | <p>Kakidani, H., & Ptashne, M. (1988). GAL4 activates gene expression in mammalian cells. <i>Cell</i>, <b>52</b>, 161-167. <a href="https://doi.org/10.1016/0092-8674(88)90504-1" target="_blank">https://doi.org/10.1016/0092-8674(88)90504-1</a>.</p> | |
− | + | <p>Segil, N., Roberts, S., & Heintz, N. (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. <i>Science</i>, <b>254</b>(5039), 1814-1816. <a href="https://doi.org/10.1126/SCIENCE.1684878" target="_blank">https://doi.org/10.1126/SCIENCE.1684878</a>.</p> | |
− | + | <p>Sladitschek, H. L., & Neveu, P. A. (2015). MXS-Chaining: a highly efficient cloning platform for imaging and flow cytometry approaches in mammalian systems. <i>PLoS ONE</i>, <b>10</b>(4), e0124958. <a href="https://doi.org/10.1371/journal.pone.0124958" target="_blank">https://doi.org/10.1371/journal.pone.0124958</a>.</p> | |
− | + | ||
− | + | ||
− | + | ||
</section> | </section> | ||
− | |||
− | |||
</html> | </html> |
Revision as of 06:49, 2 October 2024
Oct1 binding casette 5x UAS
This part contains three times Oct1 recognition sites (BBa_K5237018) and five times an upstream activating sequence (UAS). With these two sequences available we can facilitate binding of Oct1 and Gal4, utilized in our simulated enhancer hijacking using the transactivator fusion protein NLS-Gal4-VP64 (BBa_K5237014). Firefly luciferase will be expressed through Cas staple induced proximity of the transactivator.
Contents
While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D
spatial organization of DNA is well-known to be an important layer of information encoding in
particular in eukaryotes, playing a crucial role in
gene regulation and hence
cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
genomic spatial
architecture are limited, hampering the exploration of
3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
powerful
molecular toolbox for rationally engineering genome 3D architectures in living cells, based on
various DNA-binding proteins.
The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.
At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding
proteins
include our
finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
"half staples" that can be combined by scientists to compose entirely
new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
successful stapling
and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the
functionality of our Cas and
Basic staples. These
consist of staples dependent on
cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
dynamic stapling in vivo.
We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
target cells, including mammalian cells,
with our new
interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom
readout
systems. These include components of our established FRET-based proximity assay system, enabling
users to
confirm
accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
hijacking events
in mammalian cells.
The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed
exceptional performance as described on our iGEM wiki and can serve as a reference. The other
parts in
the
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
their
own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
engineering.
Our part collection includes:
DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo | ||
BBa_K5237000 | Fusion Guide RNA Entry Vector MbCas12a-SpCas9 | Entry vector for simple fgRNA cloning via SapI |
BBa_K5237001 | Staple Subunit: dMbCas12a-Nucleoplasmin NLS | Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple |
BBa_K5237002 | Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS | Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple |
BBa_K5237003 | Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS | Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity |
BBa_K5237004 | Staple Subunit: Oct1-DBD | Staple subunit that can be combined to form a functional staple, for example with TetR. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237005 | Staple Subunit: TetR | Staple subunit that can be combined to form a functional staple, for example with Oct1. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237006 | Simple Staple: TetR-Oct1 | Functional staple that can be used to bring two DNA strands in close proximity |
BBa_K5237007 | Staple Subunit: GCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237008 | Staple Subunit: rGCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237009 | Mini Staple: bGCN4 | Assembled staple with minimal size that can be further engineered | Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications |
BBa_K5237010 | Cathepsin B-cleavable Linker: GFLG | Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples |
BBa_K5237011 | Cathepsin B Expression Cassette | Expression cassette for the overexpression of cathepsin B |
BBa_K5237012 | Caged NpuN Intein | A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237013 | Caged NpuC Intein | A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits |
BBa_K5237014 | Fusion Guide RNA Processing Casette | Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming |
BBa_K5237015 | Intimin anti-EGFR Nanobody | Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs |
BBa_K4643003 | IncP Origin of Transfer | Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery | Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells |
BBa_K5237016 | FRET-Donor: mNeonGreen-Oct1 | FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237017 | FRET-Acceptor: TetR-mScarlet-I | Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity |
BBa_K5237018 | Oct1 Binding Casette | DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay |
BBa_K5237019 | TetR Binding Cassette | DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay | BBa_K5237020 | Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 | Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker |
BBa_K5237021 | NLS-Gal4-VP64 | Trans-activating enhancer, that can be used to simulate enhancer hijacking | BBa_K5237022 | mCherry Expression Cassette: UAS, minimal Promoter, mCherry | Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker |
BBa_K5237023 | Oct1 - 5x UAS Binding Casette | Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay |
BBa_K5237024 | TRE-minimal Promoter- Firefly Luciferase | Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking |
1. Sequence overview
- 10INCOMPATIBLE WITH RFC[10]Illegal XbaI site found at 103
Illegal SpeI site found at 144
Illegal SpeI site found at 175
Illegal SpeI site found at 206 - 12INCOMPATIBLE WITH RFC[12]Illegal SpeI site found at 144
Illegal SpeI site found at 175
Illegal SpeI site found at 206 - 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 215
- 23INCOMPATIBLE WITH RFC[23]Illegal XbaI site found at 103
Illegal SpeI site found at 144
Illegal SpeI site found at 175
Illegal SpeI site found at 206 - 25INCOMPATIBLE WITH RFC[25]Illegal XbaI site found at 103
Illegal SpeI site found at 144
Illegal SpeI site found at 175
Illegal SpeI site found at 206 - 1000COMPATIBLE WITH RFC[1000]
Gal4 is a well-known transcription factor from Saccharomyces cerevisiae that binds specifically to UAS regions on
DNA, activating transcription of downstream genes. Its DNA-binding domain has been widely utilized in synthetic
biology and gene regulation studies due to its specificity and ability to recruit transcriptional machinery
(Kakidani and Ptashne 1988).
The cloning strategy designed for Oct1 allows for the easy assembly of repetitive repeats. It follows the procedure
outlined by Sladitschek and Neveu (2015). Briefly, the oligos can be inserted into a vector digested with SalI and
XhoI,
yielding a vector with three binding repeats flanked by these restriction sites. The vector can be linearized with
either SalI or XhoI, as both enzymes create compatible overhangs. The annealed oligos can then be ligated into the
vector, resulting in six binding repeats, with the middle sequence losing its cleavage site compatibility. This
process
can be repeated to achieve the desired number of repeats by digesting the vector and re-ligating the oligos. For the
experiments conducted, a folding plasmid with 12 repeats was created. Since the registry has some limitations
regarding
sequence depository, the binding cassette is flanked by SalI and XhoI, and the top and bottom oligos with the
fitting
overhangs are annotated.
We were able to show our enhancer plasmid to work great with the Cas staples and the reporter plasmid. For the whole
assay, the enhancer plasmid and a reporter plasmid was used. The reporter plasmid has firefly luciferase behind
several repeats of a Cas9 targeted sequence. The enhancer plasmid has the Oct1 being targeted by Cas12a. By
introducing a fgRNA staple (BBa_K5237000) and a Gal4-VP64 (BBa_K5237021), expression of the luciferase is induced2. Usage and Biology
Oct-1 is a key transcription factor that regulates the transcription of the histone H2B gene and various
housekeeping genes involved in the cell cycle. As cells transition into mitosis, Oct-1 undergoes
hyperphosphorylation, a modification that is reversed when cells exit mitosis. Research shows that a specific
phosphorylation site within the homeodomain of Oct-1 is targeted by protein kinase A in vitro. This mitosis-specific
phosphorylation is linked to a reduction in Oct-1's DNA-binding ability, both in vivo and in vitro, suggesting that
phosphorylation of Oct-1 may contribute to the overall inhibition of transcription that occurs during mitosis (
Segil et al. (1991)).
We utilize these two recognition sites for plasmid to plasmid stapling with our Cas staples. A fgRNA targeting Oct1
and Tre on the other plasmid, is the key factor in the Cas staple, bringing them together. When the transactivator,
Gal4-VP64, binds aswell we have transactivation as a readout for functioning staples
3. Assembly and part evolution
4. Results
Cells were again normalized against ubiquitous renilla expression.
Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (see
FIGURE results eh panel B). An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher
expression of the reporter gene. These results suggest an extension of the linker might lead to better
transactivation when hijacking an enhancer/activator.
5. References
Kakidani, H., & Ptashne, M. (1988). GAL4 activates gene expression in mammalian cells. Cell, 52, 161-167. https://doi.org/10.1016/0092-8674(88)90504-1.
Segil, N., Roberts, S., & Heintz, N. (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science, 254(5039), 1814-1816. https://doi.org/10.1126/SCIENCE.1684878.
Sladitschek, H. L., & Neveu, P. A. (2015). MXS-Chaining: a highly efficient cloning platform for imaging and flow cytometry approaches in mammalian systems. PLoS ONE, 10(4), e0124958. https://doi.org/10.1371/journal.pone.0124958.