Difference between revisions of "Part:BBa K208005:Design"

(References)
(Source)
Line 10: Line 10:
 
===Source===
 
===Source===
  
Synthetically produced.
+
This part was designed to have the Silver-fusion prefix and suffix, and was synthetically produced by DNA 2.0. The obtained plasmid was then cut with EcoRI and SpeI. The insert was then ligated with a BioBrick compatible vector, pSB3K3. This part has been sequenced.
  
 
===References===
 
===References===

Revision as of 16:52, 22 October 2009

TorA Signal Peptide - Silver Fusion Compatible


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

TorA secretion tag. Silver fusion compatible. In pSB3K3.

Source

This part was designed to have the Silver-fusion prefix and suffix, and was synthetically produced by DNA 2.0. The obtained plasmid was then cut with EcoRI and SpeI. The insert was then ligated with a BioBrick compatible vector, pSB3K3. This part has been sequenced.

References

1. Barrett CML, Ray N, Thomas JD, Robinson C, Bolhuis A (2003) Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli. 2. Biochem BIophys Res Comm 304:279-284
3. Berks BC (1996) Mol Microbiol 22:393-404
4. Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35:260-274
5. Buchanan G (2008) Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS letters 582:3979
6. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli Appl Microbiol Biotechnol 64:625-635
7. Palmer T, Berks BC (2004) The Tat protein export pathway In: Oudega B, editor. Kluwer Academic Publishers, pp 51-64
8. Santini C, Bernadac A, Zhang M, Chanal A, Ize B, Blan co C, Wu L (2001) Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159-8164
9. Thomas JD, Daniel RA, errington J, Robinson C (2001) Export of Active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39:47-53