Difference between revisions of "Collections/VEGFR-like"
(10 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
<body> | <body> | ||
<div> | <div> | ||
+ | <style>table{ | ||
+ | border:1px solid black; | ||
+ | border-collapse:collapse; | ||
+ | } | ||
+ | td{ | ||
+ | border:1px solid black; | ||
+ | border-collapse:collapse; | ||
+ | }</style> | ||
<h3>VEGFR-like</h3> | <h3>VEGFR-like</h3> | ||
<hr> | <hr> | ||
<p> | <p> | ||
− | This year, the USTC iGEM team<a href="https://2024.igem.wiki/ustc/parts"> | + | This year, the USTC iGEM team<a href="https://2024.igem.wiki/ustc/parts"> USTC_Parts</a> has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like. |
− | In this year's project, we selected pBBR1MCS-2 as our plasmid backbone to construct a series of plasmids, which are used to validate the surface display system, VEGFR-like, and the masking peptides targeting VEGFR-like. And we have verified the expression of several of these plasmids in EcN. | + | |
− | + | ||
+ | <div style="text-align:center;"> | ||
+ | <img src="https://static.igem.wiki/teams/5302/images/collection1.jpg" | ||
+ | width="60%" style="display:block; margin:auto;" alt="Jamboree Program" > | ||
+ | <div style="text-align:center;"> | ||
+ | <caption> | ||
+ | <b>Figure 1. </b>Project Design | ||
+ | </caption> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | In this year's project, we selected pBBR1MCS-2 as our plasmid backbone to construct a series of plasmids, which are used to validate the surface display system, VEGFR-like, and the masking peptides targeting VEGFR-like. And we have verified the expression of several of these plasmids in EcN. | ||
+ | |||
+ | |||
+ | <div style="text-align:center;"> | ||
+ | <img src="https://static.igem.wiki/teams/5302/images/collection2.png" | ||
+ | width="60%" style="display:block; margin:auto;" alt="Jamboree Program" > | ||
+ | <div style="text-align:center;"> | ||
+ | <caption> | ||
+ | <b>Figure 2. </b> Plasmid Design | ||
+ | </caption> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | Here are all of our parts.Among them,BBa_K5302000-BBa_K5302007 are VEGFR-like and BBa_K5302008-BBa_K5302010 are masking peptides(VEGF-like).Others are plasmid. | ||
+ | Please be advised that all listed genes have undergone codon optimization for our chassis strain, Escherichia coli Nissle 1917 (EcN). For those considering alternative chassis organisms, it is recommended to reassess the necessity of codon optimization. | ||
+ | |||
+ | |||
+ | </p> | ||
<table> | <table> | ||
Line 98: | Line 139: | ||
<td><a href=""></a>Dekun Zhou</td> | <td><a href=""></a>Dekun Zhou</td> | ||
<td><a href=""></a>96</td> | <td><a href=""></a>96</td> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</tr> | </tr> | ||
<tr> | <tr> |
Latest revision as of 23:03, 1 October 2024
VEGFR-like
This year, the USTC iGEM team USTC_Parts has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like.
Here are all of our parts.Among them,BBa_K5302000-BBa_K5302007 are VEGFR-like and BBa_K5302008-BBa_K5302010 are masking peptides(VEGF-like).Others are plasmid. Please be advised that all listed genes have undergone codon optimization for our chassis strain, Escherichia coli Nissle 1917 (EcN). For those considering alternative chassis organisms, it is recommended to reassess the necessity of codon optimization.
Name | Type | Description | Designer | Length |
BBa_K5302000 | Coding | VEGFR1D2 | Jiacan Ma | 303 |
BBa_K5302001 | Coding | 8IIU | Jiacan Ma | 378 |
BBa_K5302002 | Coding | 8IJZ | Jiacan Ma | 378 |
BBa_K5302003 | Coding | ZVEGF | Dekun Zhou | 177 |
BBa_K5302004 | Coding | Z3C | Dekun Zhou | 177 |
BBa_K5302005 | Coding | miniZ | Dekun Zhou | 102 |
BBa_K5302006 | Coding | V114 | Dekun Zhou | 57 |
BBa_K5302007 | Coding | V107 | Dekun Zhou | 57 |
BBa_K5302008 | Coding | VEGFR-masking#18 | Dekun Zhou | 93 |
BBa_K5302009 | Coding | VEGFR-masking#29 | Dekun Zhou | 84 |
BBa_K5302010 | Coding | VGB | Dekun Zhou | 96 |
BBa_K5302016 | Plasmid | pBBR-OmpA-VEGFR1D2 | Xinyuan Shi | 6150 |
BBa_K5302017 | Plasmid | pBBR-OmpA-8IIU | Xinyuan Shi | 6225 |
BBa_K5302018 | Plasmid | pBBR-OmpA-8IJZ | Xinyuan Shi | 6225 |
BBa_K5302019 | Plasmid | pBBR-OmpA-ZVEGF | Xinyuan Shi | 6024 |
BBa_K5302020 | Plasmid | pBBR-OmpA-Z3C | Xinyuan Shi | 6024 |
BBa_K5302021 | Plasmid | pBBR-OmpA-miniZ | Xinyuan Shi | 5949 |
BBa_K5302022 | Plasmid | pBBR-OmpA-V114 | Xinyuan Shi | 5903 |
BBa_K5302023 | Plasmid | pBBR-OmpA-V107 | Xinyuan Shi | 5903 |
BBa_K5302024 | Plasmid | pBBR-INP-VEGFR1D2 | Bojun Yang | 6466 |
BBa_K5302025 | Plasmid | pBBR-INP-8IIU | Bojun Yang | 6541 |
BBa_K5302026 | Plasmid | pBBR-INP-8IJZ | Bojun Yang | 6541 |
BBa_K5302027 | Plasmid | pBBR-INP-ZVEGF | Bojun Yang | 6340 |
BBa_K5302028 | Plasmid | pBBR-INP-Z3C | Bojun Yang | 6340 |
BBa_K5302029 | Plasmid | pBBR-INP-miniZ | Bojun Yang | 6265 |
BBa_K5302030 | Plasmid | pBBR-INP-V114 | Bojun Yang | 6220 |
BBa_K5302031 | Plasmid | pBBR-INP-V107 | Bojun Yang | 6220 |
BBa_K5302032 | Plasmid | pBBR-OmpA-VEGFR1D2-l1masking#18 | Dekun Zhou | 6144 |
BBa_K5302033 | Plasmid | pBBR-OmpA-VEGFR1D2-l2masking#18 | Dekun Zhou | 6144 |
BBa_K5302034 | Plasmid | pBBR-OmpA-VEGFR1D2-l1masking#29 | Dekun Zhou | 6135 |
BBa_K5302035 | Plasmid | pBBR-OmpA-VEGFR1D2-l2masking#29 | Dekun Zhou | 6135 |
BBa_K5302036 | Plasmid | pBBR-OmpA-l1VGB | Dekun Zhou | 6147 |
BBa_K5302037 | Plasmid | pBBR-OmpA-l2VGB | Dekun Zhou | 6147 |
BBa_K5302038 | Plasmid | pBBR-INP-VEGFR1D2-l1masking#18 | Dekun Zhou | 6496 |
BBa_K5302039 | Plasmid | pBBR-INP-VEGFR1D2-l2masking#18 | Dekun Zhou | 6496 |
BBa_K5302040 | Plasmid | pBBR-INP-VEGFR1D2-l1masking#29 | Dekun Zhou | 6487 |
BBa_K5302041 | Plasmid | pBBR-INP-VEGFR1D2-l2masking#29 | Dekun Zhou | 6487 |
BBa_K5302042 | Plasmid | pBBR-INP-l1VGB | Dekun Zhou | 6499 |
BBa_K5302043 | Plasmid | pBBR-INP-l2VGB | Dekun Zhou | 6499 |
Reference
[1]Ivan Guryanov*, Viktor Korzhikov-Vlakh, Madhushree Bhattacharya, Barbara Biondi, Giulia Masiero, Fernando Formaggio, Tatiana Tennikova, Arto Urtt. Conformationally Constrained Peptides with High Affinity to the Vascular Endothelial Growth Factor.Journal of Medicinal Chemistry. Vol 64/Issue 15.July 16, 2021
[2]Pan B, Li B, Russell SJ, Tom JY, Cochran AG, Fairbrother WJ. Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor. J Mol Biol. 2002 Feb 22;316(3):769-87. doi: 10.1006/jmbi.2001.5370
[3]Checco JW, Kreitler DF, Thomas NC, Belair DG, Rettko NJ, Murphy WL, Forest KT, Gellman SH. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4552-7. doi: 10.1073/pnas.1420380112
[4]Rossella Di Stasi, Donatella Diana, Domenica Capasso, Rosanna Palumbo, Alessandra Romanelli, Carlo Pedone, Roberto Fattorusso, Luca D. D'Andrea. VEGFR1D2 in drug discovery: Expression and molecular characterization.19 November 2010
[5]Anna Fedorova, Kerry Zobel, Herman S. Gill, Annie Ogasawara, Judith E. Flores, Jeff N. Tinianow, Alexander N. Vanderbilt, Ping Wu, Y. Gloria Meng, Simon-P. Williams, Christian Wiesmann, Jeremy Murray, Jan Marik, Kurt Deshayes. The Development of Peptide-Based Tools for the Analysis of Angiogenesis. Chemistry & Biology. Volume 18, Issue 7. 2011. Pages 839-845. ISSN 1074-5521
[6]Balsera B, Bonache MÁ, Reille-Seroussi M, Gagey-Eilstein N, Vidal M, González-Muñiz R, Pérez de Vega MJ. Disrupting VEGF-VEGFR1 Interaction: De Novo Designed Linear Helical Peptides to Mimic the VEGF13-25 Fragment. Molecules. 2017 Oct 28;22(11):1846
[7]Lei Wang,Lingyu Zhou,Marie Reille-Seroussi,Nathalie Gagey-Eilstein,Sylvain Broussy, Tianyu Zhang,Lili Ji,Michel Vidal*,Wang-Qing Liu.Identification of Peptidic Antagonists of Vascular Endothelial Growth Factor Receptor 1 by Scanning the Binding Epitopes of Its Ligands.July7.2017
[8]Sonia Nicchi1,2, Maria Giuliani1 , Fabiola Giusti1 , Laura Pancotto1 , Domenico Maione1 , Isabel Delany1 ,
Cesira L. Galeotti1 and Cecilia Brettoni1*.Decorating the surface of Escherichia coli with bacterial lipoproteins: a comparative analysis of diferent display systems.2021