Difference between revisions of "Part:BBa K5317017"

(Characterization)
(Usage and Biology)
Line 3: Line 3:
  
 
===Usage and Biology===
 
===Usage and Biology===
ATF2 belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis. With the addition of the ATF2 gene, this plasmid enables the study of transcriptional regulation of ATF2 (Kirsch ''et al.'', 2020) and its phosphorylation by PknB, making it important for research into signaling pathways related to cell stress and survival (Zhang ''et al.'', 2020). The consensus sequence for the CRE (cAMP-responsive elements) sequence that ATF2 binds to is typically represented as 5'-GTGACGT[AC][AG]-3' (Hai ''et al.'',1989).
+
 
 +
In order to be able to receive and detect the signal sent by PknB kinase activity/ATF2 phosphorylation and activation, we have developed an ATF2-responsive promoter.
 +
 
 +
The ATF2 transcription factor belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis (Kirsch ''et al.'', 2020). Activated ATF2 binds to the cAMP-responsive element (CRE) with the consensus sequence 5'-GTGACGT[AC][AG]-3' (Hai ''et al.'',1989). Additionally, ATF2 can form homo- or heterodimers together with members of its own protein family, as well as for example the Fos protein family or Jun protein family, and bind to AP1-binding sites TGAG/CTCA by their conserved basic region leucine zippers (bZIPs) motifs (Kim "et al.", 2021). Therefore, we generated a promoter combining CRE as well as AP1-bindin sites to increase binding possibility of our ATF2-mRuby2 fusion protein. A further increase in promoter efficiency was achieved by not only including one but three of each binding motifs, this enables a signal amplification by increasing the possibility of interaction between ATF2 and our promoter.
 +
Finally, we constructed a miniCMV promoter, just containing the TATA-box and the Initiator-Sequence of the original CMV-promoter, downstream of our 3xCRE3xAP1-bining sites to ensure a functional and strong transcription when activated by ATF2, of the, in the composite part, downstream positioned reporter protein miRFP670.
  
 
=Cloning=
 
=Cloning=

Revision as of 17:36, 1 October 2024

3xCre3xAP1-miniCMV Promoter

Usage and Biology

In order to be able to receive and detect the signal sent by PknB kinase activity/ATF2 phosphorylation and activation, we have developed an ATF2-responsive promoter.

The ATF2 transcription factor belongs to the ATF/CREB family and regulates genes involved in cell growth, stress responses and apoptosis (Kirsch et al., 2020). Activated ATF2 binds to the cAMP-responsive element (CRE) with the consensus sequence 5'-GTGACGT[AC][AG]-3' (Hai et al.,1989). Additionally, ATF2 can form homo- or heterodimers together with members of its own protein family, as well as for example the Fos protein family or Jun protein family, and bind to AP1-binding sites TGAG/CTCA by their conserved basic region leucine zippers (bZIPs) motifs (Kim "et al.", 2021). Therefore, we generated a promoter combining CRE as well as AP1-bindin sites to increase binding possibility of our ATF2-mRuby2 fusion protein. A further increase in promoter efficiency was achieved by not only including one but three of each binding motifs, this enables a signal amplification by increasing the possibility of interaction between ATF2 and our promoter. Finally, we constructed a miniCMV promoter, just containing the TATA-box and the Initiator-Sequence of the original CMV-promoter, downstream of our 3xCRE3xAP1-bining sites to ensure a functional and strong transcription when activated by ATF2, of the, in the composite part, downstream positioned reporter protein miRFP670.

Cloning

Theoretical Part Design

This synthetic part was synthesised by Eurofins.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 273

Characterization

For further analysing co-expression experiments with PknB (K5317013) and the ATF2 (K5317017) please visit the registry entry (K5317022).

References

Hai, T. W., Liu, F., Coukos, W. J., & Green, M. R. (1989). Transcription factor ATF cDNA clones: An extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes & Development, 3(12b), 2083–2090. https://doi.org/10.1101/gad.3.12b.2083

Miller, M., Donat, S., Rakette, S., Stehle, T., Kouwen, T. R. H. M., Diks, S. H., Dreisbach, A., Reilman, E., Gronau, K., Becher, D., Peppelenbosch, M. P., Van Dijl, J. M., & Ohlsen, K. (2010). Staphylococcal PknB as the First Prokaryotic Representative of the Proline-Directed Kinases. PLoS ONE, 5(2), e9057. https://doi.org/10.1371/journal.pone.0009057