Difference between revisions of "Part:BBa K5302003"
Line 1: | Line 1: | ||
− | ZVEGF is a 59-residue three-helix peptide that was developed by Fedorova et al. by randomizing 9 residues on helices 1 and 2 of the Z-domain scaffold via phage display, followed by selection for binding to the VEGF8-109 dimer. A co-crystal structure of ZVEGF with VEGF8-109 shows that the engineered Z-domain adopts the expected three-helix bundle tertiary structure and engages the receptor-recognition sites on the VEGF dimer through a surface formed by helices 1 and 2 of ZVEGF. It shows great affinity with VEGF(Ki=0.41 μM).We used | + | |
+ | __NOTOC__ | ||
+ | <partinfo>BBa_K5302002 short</partinfo> | ||
+ | |||
+ | This year, the USTC iGEM team has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like. ZVEGF is a 59-residue three-helix peptide that was developed by Fedorova et al. by randomizing 9 residues on helices 1 and 2 of the Z-domain scaffold via phage display, followed by selection for binding to the VEGF8-109 dimer. A co-crystal structure of ZVEGF with VEGF8-109 shows that the engineered Z-domain adopts the expected three-helix bundle tertiary structure and engages the receptor-recognition sites on the VEGF dimer through a surface formed by helices 1 and 2 of ZVEGF. It shows great affinity with VEGF(Ki=0.41 μM).We used pBBR1MCS-2 plasmid as a backbone and transfered ZVEGF into Escherichia coli Nissle 1917, and finally succeeded in expressing ZVEGF. | ||
+ | |||
+ | <!-- Add more about the biology of this part here | ||
+ | ===Usage and Biology=== | ||
+ | |||
+ | <!-- --> | ||
+ | <span class='h3bb'>Sequence and Features</span> | ||
+ | <partinfo>BBa_K5302002 SequenceAndFeatures</partinfo> | ||
+ | |||
+ | |||
+ | <!-- Uncomment this to enable Functional Parameter display | ||
+ | ===Functional Parameters=== | ||
+ | <partinfo>BBa_K5302002 parameters</partinfo> | ||
+ | <!-- --> |
Revision as of 05:58, 1 October 2024
8IJZ
This year, the USTC iGEM team has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like. ZVEGF is a 59-residue three-helix peptide that was developed by Fedorova et al. by randomizing 9 residues on helices 1 and 2 of the Z-domain scaffold via phage display, followed by selection for binding to the VEGF8-109 dimer. A co-crystal structure of ZVEGF with VEGF8-109 shows that the engineered Z-domain adopts the expected three-helix bundle tertiary structure and engages the receptor-recognition sites on the VEGF dimer through a surface formed by helices 1 and 2 of ZVEGF. It shows great affinity with VEGF(Ki=0.41 μM).We used pBBR1MCS-2 plasmid as a backbone and transfered ZVEGF into Escherichia coli Nissle 1917, and finally succeeded in expressing ZVEGF.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]