Difference between revisions of "Part:BBa K5237996"

(Blanked the page)
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
__NOTOC__
 
<partinfo>BBa_K5237002</partinfo>
 
<html>
 
<style>
 
  p {
 
    text-align: justify;
 
    margin-right: 25px;
 
    font-style: normal;
 
  }
 
  
  section {
 
    margin-left: 25px;
 
    margin-right: 25px;
 
    margin-top: 25px;
 
  }
 
 
  .thumb {
 
    width: 100%;
 
  }
 
 
  table,
 
  th,
 
  td {
 
    border: 0.5px solid black;
 
    border-collapse: collapse;
 
  }
 
 
  th,
 
  td {
 
    padding: 1.5px;
 
  }
 
</style>
 
 
<body>
 
  <!-- Part summary -->
 
  <section id="1">
 
    <h1>SV40 NLS-dSpCas9-SV40 NLS</h1>
 
    <p>dSpCas9 is one crucial part of our PICasSO tool box, being able to function as a Cas staple with the fgRNA
 
      (<a href="https://parts.igem.org/Part:BBa_K523700">BBa_K5237000</a>) and the dMbCas12a (<a
 
        href="https://parts.igem.org/Part:BBa_K523701">BBa_K5237001</a>). Transactivation has been shown using this part
 
      proving the proper
 
      formation of our Cas staple. Easy employment through swift reprogramming of the fgRNA.</p>
 
    <p>&nbsp;</p>
 
  </section>
 
  <div id="toc" class="toc">
 
    <div id="toctitle">
 
      <h1>Contents</h1>
 
    </div>
 
    <ul>
 
      <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 
            overview</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
 
            Biology</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
 
            and part evolution</span></a>
 
        <ul>
 
          <li class="toclevel-2 tocsection-3.1"><a href="#3.1"><span class="tocnumber">3.1</span> <span
 
              class="toctext">SpCas9 can be Co-Transfected wWth other Cas Proteins</span></a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.2"><a href="#3.2"><span class="tocnumber">3.2</span> <span
 
              class="toctext">SpCas9 shows editing with fgRNA</span></a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.3"><a href="#3.3"><span class="tocnumber">3.3</span> <span
 
              class="toctext">SpCas9 can be fused to MbCas12a while maintaining functionality</span></a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.4"><a href="#3.4"><span class="tocnumber">3.4</span> <span
 
              class="toctext">SpCas9 fused to MbCas12a shows editing with fgRNA</span></a>
 
          </li>
 
        </ul>
 
      </li>
 
      <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
            class="toctext">Results</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
 
            class="toctext">References</span></a>
 
      </li>
 
    </ul>
 
  </div>
 
  <section>
 
    <font size="5"><b>The PICasSO Toolbox </b> </font>
 
    <p><br></p>
 
    <div class="thumb"></div>
 
    <div class="thumbinner" style="width:550px"><img alt=""
 
        src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
 
        style="width:99%;" class="thumbimage">
 
      <div class="thumbcaption">
 
        <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
 
      </div>
 
    </div>
 
    </div>
 
 
 
    <p>
 
      <br>
 
      The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
 
      impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
 
      chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
 
      manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
 
      3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
      toolbox based on various DNA-binding proteins to address this issue.
 
 
    </p>
 
    <p>
 
      The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
 
      re-programming
 
      of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic
 
      interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation.
 
      Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
      testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
 
      parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
 
    </p>
 
 
    <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding
 
        proteins</b>
 
      include our
 
      finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
 
      new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
 
      and can be further engineered to create alternative, simpler and more compact staples. <br>
 
      <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and
 
      Basic staples. These
 
      consist of
 
      protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
 
      Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs
 
      with our
 
      interkingdom conjugation system. <br>
 
      <b>(iii)</b> As the final component of our collection, we provide parts that support the use of our <b>custom
 
        readout
 
        systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
      confirm
 
      accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
 
      readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
 
    </p>
 
    <p>
 
      The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
 
      exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
 
      collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
 
      own custom Cas staples, enabling further optimization and innovation.<br>
 
    </p>
 
    <p>
 
      <font size="4"><b>Our part collection includes:</b></font><br>
 
    </p>
 
 
    <table style="width: 90%;">
 
      <td colspan="3" align="left"><b>DNA-binding proteins: </b>
 
        The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
        easy assembly.</td>
 
      <tbody>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
          <td>fgRNA Entryvector MbCas12a-SpCas9</td>
 
          <td>Entryvector for simple fgRNA cloning via SapI</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
          <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
          <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
 
          </td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
          <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
 
          <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
 
          </td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
          <td>Staple subunit: Oct1-DBD</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
 
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
          <td>Staple subunit: TetR</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
 
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
          <td>Simple taple: TetR-Oct1</td>
 
          <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
 
          <td>Staple subunit: GCN4</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
 
          <td>Staple subunit: rGCN4</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
 
          <td>Mini staple: bGCN4</td>
 
          <td>
 
            Assembled staple with minimal size that can be further engineered</td>
 
        </tr>
 
      </tbody>
 
      <td colspan="3" align="left"><b>Functional elements: </b>
 
        Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
 
        for custom applications.</td>
 
      <tbody>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
          <td>Cathepsin B-Cleavable Linker (GFLG)</td>
 
          <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits ,to make responsive
 
            staples</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
          <td>Cathepsin B Expression Cassette</td>
 
          <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
          <td>Caged NpuN Intein</td>
 
          <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
 
            units</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
          <td>Caged NpuC Intein</td>
 
          <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
 
            units</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
          <td>fgRNA processing casette</td>
 
          <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
 
          <td>Intimin anti-EGFR Nanobody</td>
 
          <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
 
            constructs</td>
 
        </tr>
 
      </tbody>
 
      <td colspan="3" align="left"><b>Readout Systems: </b>
 
        FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
 
        enabling swift testing and easy development for new systems.</td>
 
      <tbody>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
          <td>FRET-Donor: mNeonGreen-Oct1</td>
 
          <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
 
            proximity</td>
 
        </tr>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
 
          <td>FRET-Acceptor: TetR-mScarlet-I</td>
 
          <td>Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA
 
            proximity</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
          <td>Oct1 Binding Casette</td>
 
          <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
 
            proximity assay</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
 
          <td>TetR Binding Cassette</td>
 
          <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
 
            proximity assay</td>
 
        </tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
        <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
 
        <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
          <td>NLS-Gal4-VP64</td>
 
          <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
 
        </tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
        <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
 
        <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
          <td>Oct1 - 5x UAS binding casette</td>
 
          <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
 
          <td>TRE-minimal promoter- firefly luciferase</td>
 
          <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
 
            simulated enhancer hijacking.</td>
 
        </tr>
 
      </tbody>
 
    </table>
 
    </p>
 
  </section>
 
  <section id="1">
 
    <h1>1. Sequence overview</h1>
 
  </section>
 
</body>
 
 
</html>
 
 
<!--################################-->
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K5237002 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
 
<html>
 
 
 
<section id="2">
 
  <h1>2. Usage and Biology</h1>
 
  <p>
 
    In 2012, Jinek et al. discovered the use of the Clustered Regularly Interspaced Short Palindromic Repeats
 
    (CRISPR)/Cas system to induce double-strand breaks in DNA. Since then, the system has been well established as a
 
    tool
 
    for genome editing. The CRISPR/Cas system, which originates from the bacterial immune system, is constituted by a
 
    ribonucleoprotein complex. For class 1 CRISPR systems, the RNA is complexed by multiple Cas proteins, whereas class
 
    2
 
    systems consist of a singular protein and RNA. The class 2 type II system describes all ribonucleoprotein complexes
 
    with Cas9 (Pacesa et al., 2024). They include a CRISPR RNA (crRNA), which specifies the target with a 20 nucleotide
 
    (nt) spacer sequence, and a transactivating CRISPR RNA (tracrRNA), which induces the processing by the Cas protein
 
    (Jinek et al., 2012) (see FIGURE background Cas9 cas12 panel A). Furthermore, a specific three nucleotide sequence
 
    (NGG) on the 3' end in the targeted DNA is needed for binding and cleavage. This is referred to as the protospacer
 
    adjacent motif (PAM) (Sternberg et al., 2014). The most commonly used Cas9 protein is SpCas9 or SpyCas9, which
 
    originates from Streptococcus pyogenes (Pacesa et al., 2024).
 
  </p>
 
  <div class="thumb">
 
    <div class="thumbinner" style="width:60%;">
 
      <img alt=""
 
        src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-cas9-cas12a-principle.svg"
 
        style="width:99%;" class="thumbimage">
 
      <div class="thumbcaption">
 
        <i>
 
          <b>Figure 2: The CRISPR/Cas system (adapted from Pacesa <i>et al.</i> (2024))</b>
 
          A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA strand with the PAM.
 
          The spacer sequence forms base pairings with the dsDNA. In case of Cas9 the
 
          spacer is located at the 5' prime end, for Cas12a at the 3' end of the gRNA. The scaffold of the gRNA forms a
 
          specific
 
          secondary structure enabling it to bind to the Cas protein. The cut sites by the cleaving domains, RuvC and
 
          HNH, are
 
          symbolized by the scissors
 
        </i>
 
      </div>
 
    </div>
 
  </div>
 
  <p>
 
    A significant enhancement of this system was the introduction of single guide RNA (sgRNA)s, which combine the
 
    functions
 
    of a tracrRNA and crRNA (Mali et al., 2013). Moreover, Cong et al. (2013) established precise targeting of human
 
    endogenous loci by designing the 20 nt spacer sequence accordingly.
 
    <br><br>
 
    Cas9 possesses RuvC and HNH domains that are catalytically active, each of which cleaves one of the DNA strands at
 
    the
 
    same site, resulting in the formation of blunt end cuts (Nishimasu et al., 2014). Specific mutations of these
 
    domains
 
    result in catalytic inactivity and therefore allow for the creation of nickases that only cut one of the DNA
 
    strands, or
 
    completely inactive Cas proteins (Koonin et al., 2023) (Kleinstiver et al., 2019). These are referred to as dead Cas
 
    proteins or dCas9. These Cas proteins can be used to activate (CRISPRa) or inhibit (CRISPRi) the expression of genes
 
    by
 
    fusing them to effector domains and targeting the respective gene with the spacer sequence (Kampmann, 2017). A
 
    common
 
    approach for CRISPRa involves fusing Cas9 with the transcriptional activator VP64 (Kampmann, 2017).
 
  </p>
 
</section>
 
<section id="3">
 
  <h1>3. Assembly and part evolution</h1>
 
  <p>
 
    Before working with the dSpCas9 the catalytically active version was extensively tested to assess the SpCas9 to be
 
    fit for being part of a Cas staple. The SpCas9 plasmid was provided by our PI.
 
  </p>
 
  <section id="3.1">
 
    <h2>3.1 SpCas9 can be Co-Transfected wWth other Cas Proteins</h2>
 
    <p>
 
      Wanting to employ the SpCas9 as part of a Cas staple, our goal was to find out how well SpCas9 can stay active
 
      while
 
      being transfected together with MbCas12a. Therefore we engineered the dual luciferase assay to allow us to test
 
      two
 
      catalytically active Cas proteins at once. Including a well established protospacer, CCR5, into the renilla
 
      luciferase
 
      gene enables us to test the editing rates of two Cas proteins simultaneously
 
      (Fig. 3).
 
    </p>
 
    <div class="thumb">
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/engineering/fusioncas-registry.svg" style="width:99%;"
 
          class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 3: Double cut dual luciferase assay testing Fusion Cas simultaneous editing.</b>
 
            Firefly and renilla luminescence intensity is plotted, both measured 48 h after transfection. On the x-axis
 
            the negative
 
            control, single edit and simultaneous edit, are grouped by the two Cas proteins in the fusion Cas. The
 
            fusion Cas
 
            contains MbCas12a and SpCas9. MbCas12a are the Firefly relative luminescence units (RLUs), while Cas9 are
 
            the Renilla
 
            RLUs. Data is depicted as the mean +/- SD (n=3). Statistical analysis was performed using 2way ANOVA with
 
            Tukey's multiple
 
            comparisons test. For better clarity, only significant differences within a group are shown.*p&lt;0.05,
 
            **p&lt;0.01, ***p&lt;0.001, ****p&lt;0.0001
 
          </i>
 
        </div>
 
      </div>
 
    </div>
 
  </section>
 
  <section>
 
    <h2 id="3.2">3.2 SpCas9 shows editing with fgRNA</h2>
 
    <p>
 
      Wanting to test if the different parts of our Cas staples will work together, we tested editing rates of SpCas9
 
      using
 
      fgRNA. Two spacers were tested: FANCF and VEGFA. To better assess the impact that the utilization of a fgRNA has
 
      on the
 
      editing rates, the sgRNAs were tested separately and in one sample. <br>
 
      Having the sgRNA with single Cas proteins in the same sample resulted in no clear
 
      difference in the editing rates (Fig. 4). The fusion of the gRNAs resulted in a lower editing rate
 
      overall. While the editing for VEGFA stayed at about 20% in all
 
      cases, the editing for FANCF dropped significantly. Nonetheless we were able to show SpCas9 editing utilizing a
 
      fgRNA.
 
    </p>
 
    <div class="thumb">
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-mbcas-2.svg" style="width:99%;"
 
          class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 4: Fusion gRNA Editing Rates In Combination with MbCas12a.</b>
 
            In <b>A</b> and <b>B</b> the editing rates were determined 72h after transfection via T7EI assay. Editing %
 
            was
 
            determined by measuring band intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved
 
            band))<sup>1/2</sup>. The
 
            schematic at the top shows the composition of the fgRNA. Below each spacer is the targeted gene. The symbols
 
            below
 
            indicate which parts are included in each sample. <i class="italic">A</i> and <i class="italic">B</i>
 
            display both
 
            orientations of the two spacers for VEGFA and FANCF.
 
          </i>
 
        </div>
 
      </div>
 
    </div>
 
    <p>
 
      To further assess the effect of the genomic locus on the editing rate, we included CCR5 as an additional gene
 
      target.
 
      For this assay, a fgRNA with a 20 nt long linker was included between the two spacers.
 
      The editing rate for VEGFA was again relatively consistent throughout the samples (Fig. 5).
 
    </p>
 
    <div class="thumb">
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-ccr5-2.svg"
 
        style="width:99%;" class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 5: Fusion gRNA Editing Rates for Multiplexing CCR5 and VEGFA.</b>
 
            The editing rates were determined 72h after
 
            transfection via T7EI assay. Editing % was determined by measuring band intensities; Editing % = 100 x (1 -
 
            (1- cleaved
 
            band/uncleaved band)) <sup>1/2</sup>. The schematic at the top shows the composition of the fgRNA. Below
 
            each spacer is
 
            the targeted gene. The symbols below indicate which parts are included in each sample. Cas12a targets VEGFA
 
            and Cas9
 
            targets CCR5.
 
          </i>
 
        </div>
 
      </div>
 
    </div>
 
    <p>
 
      For CCR5, the editing rate with sgRNAs was approximately the same at about 30%. However, it dropped below 10% for
 
      the
 
      fgRNA. The addition of the 20 nt linker had no effect on the editing rates compared to no linker.
 
    </p>
 
  </section>
 
  <section id="3.3"><h2>3.3 SpCas9 can be fused to MbCas12a while maintaining functionality</h2>
 
    <p>
 
      Testing showed simultaneous editing of MbCas12a and SpCas9. Therefore we wanted to test protein-protein fusion,
 
      potentially giving us another way of Cas stapling. Our goal was to find out how well SpCas9 can stay active while
 
      being
 
      fused to MbCas12a. Therefore we employed the previously engineered dual luciferase assay to allow us for testing
 
      two
 
      catalytically active Cas proteins at once, this time being fused to each other (Fig. 6).
 
    </p>
 
    <div class="thumb">
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/engineering/fusioncas-registry.svg" style="width:99%;"
 
          class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 6: Double cut dual luciferase assay testing Fusion Cas simultaneous editing.</b>
 
            Firefly and renilla luminescence intensity is plotted, both measured 48 h after transfection. On the x-axis
 
            the negative
 
            control, single edit and simultaneous edit, are grouped by the two Cas proteins in the fusion Cas. The
 
            fusion Cas
 
            contains MbCas12a and SpCas9. MbCas12a are the Firefly relative luminescence units (RLUs), while Cas9 are
 
            the Renilla
 
            RLUs. Data is depicted as the mean +/- SD (n=3). Statistical analysis was performed using 2way ANOVA with
 
            Tukey's multiple
 
            comparisons test. For better clarity, only significant differences within a group are shown.*p&lt;0.05,
 
            **p&lt;0.01, ***p&lt;0.001, ****p&lt;0.0001
 
          </i>
 
        </div>
 
      </div>
 
    </div>
 
    <p>
 
      MbCas12a showed highly significant editing rate in the single cut experiment (only MbCas12a has a targeting gRNA).
 
      When introducing a targeting gRNA for SpCas9 no significant change could be detected,
 
      strongly suggesting both Cas proteins in the fusion Cas to be able to edit simultaneously.
 
    </p>
 
  </section>
 
  <section id="3.4">
 
    <h2>3.4 SpCas9 fused to MbCas12a shows editing with fgRNA</h2>
 
    <p>
 
      The capability of SpCas9 in the fusion Cas was tested by assessing the editing rates via a T7EI assay. For this,
 
      the
 
      same target sequences as before were used, namely FANCF and VEGFA in both configurations. Biological
 
      duplicates were done for this assay. <br>
 
      SpCas9 editing rates were higher overall. At the same time, when targeting VEGFA they resulted in a higher editing
 
      efficiency than FANCF.
 
    </p>
 
    <div class=thumb>
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-fcas-2.svg" style="width:99%;"
 
          class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 7: Editing rates for fusion guide RNAs with fusion Cas proteins.</b>
 
            the editing rates were determined 72h after transfection via T7EI assay. Editing % was determined by
 
            measuring band
 
            intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved band)) <sup>1/2</sup>. The schematic at the
 
            top shows the
 
            composition of the fgRNA. Below each spacer is the targeted gene. The symbols below indicate which parts are
 
            included in
 
            each sample. Cas proteins linked by a dash ("-") were fused to each other. Biological replicates are marked
 
            as
 
            individual dots
 
          </i>
 
        </div>
 
      </div>
 
  </section>
 
</section>
 
 
 
<section id="4">
 
  <h1>4. Results</h1>
 
  <p>
 
    We extensively characterized the catalytically active SpCas9 in several assays asserting functional editing with a
 
    fusion guide RNA (BBa_K5237000), showing high activity while being co-transfected with MbCas9, our second staple
 
    protein's active version, and lastly a functioning fusion to MbCas12a.<br>
 
    After all these successful test we were confident to test the Cas staples in action.
 
  </p>
 
  <section id="4.1"><h2>4.1 dSpCas9 transactivation as part of a Cas staple</h2>
 
    <p>
 
      The next step was to use the SpCas9 as part of a Cas staple to staple two DNA loci together, and thereby induce
 
      proximity between two separate functional elements. For this, an enhancer plasmid and a reporter plasmid was used. The
 
      reporter plasmid has firefly luciferase behind several repeats of a Cas9 targeted sequence. The enhancer plasmid has a
 
      Gal4 binding site behind several repeats of a Cas12a targeted sequence. By introducing a fgRNA staple and a Gal4-VP64,
 
      expression of the luciferase is induced (Fig. 8, A).
 
      Different linker lengths were tested. Cells were again normalized against ubiquitous renilla expression.
 
      Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (Fig. 8, B).
 
      An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher expression of the reporter gene.
 
    </p>
 
    <div class="thumb">
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-eh-2.svg"
 
          style="width:99%;" class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 8: Applying Fusion Guide RNAs for Cas staples.</b> <b>A</b>, schematic overview of the assay. An enhancer
 
            plasmid and a reporter plasmid are brought into proximity by a fgRNA Cas staple complex binding both plasmids. Target
 
            sequences were included in multiple repeats prior to the functional elements. Firefly luciferase serves as the reporter
 
            gene, the enhancer is constituted by multiple Gal4 repeats that are bound by a Gal4-VP64 fusion.
 
            <B>B</B>, results of using a fgRNA Cas staple for trans activation of firefly luciferase. Firefly
 
            luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed Renilla luciferase.
 
            Statistical significance was calculated with ordinary One-way ANOVA with Dunn's method for multiple comparisons (*p &lt;
 
            0.05; **p &lt; 0.01; ***p &lt; 0.001; mean +/- SD). The assay included sgRNAs and fgRNAs with linker lengths from 0 nt
 
            to 40 nt.
 
          </i>
 
        </div>
 
      </div>
 
    </div>
 
  </section>
 
  <section id="4.2"><h2>4.2 SpCas9 fused to dMbCas12a form the Cas staple</h2>
 
    <p>
 
      Continuing the procedure in a similar manner, we focused on inducing proximity between genetic loci using the fusion
 
      dCas next, consisting of dMbCas12a fused to dSpCas9. The same assay was used, with one enhancer plasmid and one reporter
 
      plasmid. Though less distinct than the results for not using a protein fusion, the fusion Cas proteins can be used to
 
      increase expression levels of the reporter firefly luciferase (see figure 13). While using sgRNAs results in similar
 
      relative luciferase activity as for the negative control between 0.1 and 0.2., using a fgRNA with a 20 to 30 nt linker
 
      consistently resulted in activities at 0.25. Fusion guide RNAs without a linker and with a 40 nt linker had on average
 
      about the same activity, but with a higher spread over the biological replicates. Nonetheless this showed the dMbCas12a
 
      fused to the dSpCas9 to be working as a Cas staple. Further tweaking is needed to get better results
 
    </p>
 
    <div class="thumb">
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-fcas-eh-2.svg"
 
        style="width:99%;" class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 9: Firefly luciferase trans activation through fusion Cas staple</b>
 
            Firefly luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed Renilla
 
            luciferase. Statistical significance was calculated with ordinary One-way ANOVA with Dunn's method for multiple
 
            comparisons (*p &lt; 0.05; **p &lt; 0.01; ***p &lt; 0.001; mean +/- SD). Fusion Cas proteins were paired with sgRNAs and fgRNAs
 
              with linker lengths from 0 nt to 40 nt
 
          </i>
 
        </div>
 
      </div>
 
    </div>
 
  </section>
 
</section>
 
<section id="5">
 
  <h1>5. References</h1>
 
  <p>Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. <i>Science, 337</i>, 816–821. <a href="https://doi.org/10.1126/science.1225829" target="_blank">https://doi.org/10.1126/science.1225829</a>.</p>
 
 
  <p>Kampmann, M. (2017). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. <i>ACS Chemical Biology, 13</i>, 406–416. <a href="https://doi.org/10.1021/acschembio.7b00657" target="_blank">https://doi.org/10.1021/acschembio.7b00657</a>.</p>
 
 
 
  <p>Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., and Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. <i>Nature Biotechnology, 37</i>, 276–282. <a href="https://doi.org/10.1038/s41587-018-0011-0" target="_blank">https://doi.org/10.1038/s41587-018-0011-0</a>.</p>
 
 
 
  <p>Koonin, E. V., Gootenberg, J. S., and Abudayyeh, O. O. (2023). Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. <i>Biochemistry, 62</i>, 3465–3487. <a href="https://doi.org/10.1021/acs.biochem.3c00159" target="_blank">https://doi.org/10.1021/acs.biochem.3c00159</a>.</p>
 
 
 
  <p>Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013). RNA-Guided Human Genome Engineering via Cas9. <i>Science, 339</i>, 823–826. <a href="https://doi.org/10.1126/science.1232033" target="_blank">https://doi.org/10.1126/science.1232033</a>.</p>
 
 
 
  <p>Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. <i>Cell, 156</i>, 935–949. <a href="https://doi.org/10.1016/j.cell.2014.02.001" target="_blank">https://doi.org/10.1016/j.cell.2014.02.001</a>.</p>
 
 
 
  <p>Pacesa, M., Pelea, O., and Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. <i>Cell, 187</i>, 1076–1100. <a href="https://doi.org/10.1016/j.cell.2024.01.042" target="_blank">https://doi.org/10.1016/j.cell.2024.01.042</a>.</p>
 
 
 
  <p>Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014). DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. <i>Nature, 507</i>, 62–67. <a href="https://doi.org/10.1038/nature13011" target="_blank">https://doi.org/10.1038/nature13011</a>.</p>
 
 
 
</section>
 
</body>
 
 
</html>
 

Latest revision as of 01:22, 1 October 2024