Difference between revisions of "Part:BBa K5237997"

(Blanked the page)
 
Line 1: Line 1:
  
__NOTOC__
 
<partinfo>BBa_K5237001</partinfo>
 
<html>
 
<style>
 
  p {
 
    text-align: justify;
 
    margin-right: 25px;
 
    font-style: normal;
 
  }
 
 
  section {
 
    margin-left: 25px;
 
    margin-right: 25px;
 
    margin-top: 25px;
 
  }
 
 
  .thumb {
 
    width: 100%;
 
  }
 
 
  table,
 
  th,
 
  td {
 
    border: 0.5px solid black;
 
    border-collapse: collapse;
 
  }
 
  .thumbcaption {
 
      text-align:justify !important;
 
    }
 
  th,
 
  td {
 
    padding: 1.5px;
 
  }
 
</style>
 
 
<body>
 
  <!-- Part summary -->
 
  <section id="1">
 
    <h1>Staple subunit: dMbCas12a-Nucleoplasmin NLS</h1>
 
    <p>dMbCas12a is one crucial part of our PICasSO tool box, being able to function as a Cas staple with the fgRNA
 
      (BBa_K5237000) and the dSpCas9 (BBa_K5237002). Transactivation has been shown using this part proving the proper
 
      formation of our Cas staple. Easy employment through swift reprogramming of the fgRNA.</p>
 
    <p>&nbsp;</p>
 
  </section>
 
  <div id="toc" class="toc" style="width:30%;">
 
    <div id="toctitle">
 
      <h1>Contents</h1>
 
    </div>
 
    <ul>
 
      <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 
            overview</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
 
            Biology</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
 
            and part evolution</span></a>
 
        <ul>
 
          <li class="toclevel-2 tocsection-3.1"><a href="#3.1"><span class="tocnumber">3.1</span> <span
 
                class="toctext">Qualtitative assesment of Cas12a orthologs</span></a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.2"><a href="#3.2"><span class="tocnumber">3.2</span> <span
 
                class="toctext">Quantitative comparison between AsCas12a and MbCas12a</span></a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.3"><a href="#3.3"><span class="tocnumber">3.3</span> <span
 
                class="toctext">MbCas12a tolerates co-transfection and
 
                simultaneous editing of different Cas proteins</span></a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.4"><a href="#3.4"><span class="tocnumber">3.4</span> <span
 
                class="toctext"></span>MbCas12a shows editing with fgRNA</a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.5"><a href="#3.5"><span class="tocnumber">3.5</span> <span
 
                class="toctext">MbCas12a withstanding fusion to SpCas9 while staying functional</span></a>
 
          </li>
 
          <li class="toclevel-2 tocsection-3.6"><a href="#3.6"><span class="tocnumber">3.6</span> <span
 
                class="toctext">MbCas12a fused to SpCas9 editing utilizing a fgRNA</span></a>
 
        </ul>
 
      </li>
 
      <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
            class="toctext">Results</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
 
            class="toctext">References</span></a>
 
      </li>
 
    </ul>
 
  </div>
 
  <section>
 
    <font size="5"><b>The PICasSO Toolbox </b> </font>
 
    <p><br></p>
 
    <div class="thumb"></div>
 
      <div class="thumbinner" style="width:550px"><img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;" class="thumbimage">
 
        <div class="thumbcaption">
 
          <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
 
        </div>
 
      </div>
 
    </div>
 
   
 
 
    <p>
 
      <br>
 
      The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
 
      impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
 
      chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
 
      manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
 
      3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
      toolbox based on various DNA-binding proteins to address this issue.
 
 
    </p>
 
    <p>
 
      The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
 
      re-programming
 
      of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic
 
      interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation.
 
      Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
      testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
 
      parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
 
    </p>
 
 
    <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b>
 
      include our
 
      finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
 
      new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
 
      and can be further engineered to create alternative, simpler and more compact staples. <br>
 
      <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
 
      consist of
 
      protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
 
      Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our
 
      interkingdom conjugation system. <br>
 
      <b>(iii)</b> As the final component of our collection, we provide parts that support the use of our <b>custom readout
 
        systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
      confirm
 
      accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
 
      readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
 
    </p>
 
    <p>
 
      The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
 
      exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
 
      collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
 
      own custom Cas staples, enabling further optimization and innovation.<br>
 
    </p>
 
    <p>
 
      <font size="4"><b>Our part collection includes:</b></font><br>
 
    </p>
 
 
    <table style="width: 90%;">
 
      <td colspan="3" align="left"><b>DNA-binding proteins: </b>
 
        The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
        easy assembly.</td>
 
      <tbody>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
          <td>fgRNA Entryvector MbCas12a-SpCas9</td>
 
          <td>Entryvector for simple fgRNA cloning via SapI</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
          <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
          <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
 
          </td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
          <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
 
          <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
 
          </td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
          <td>Staple subunit: Oct1-DBD</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
 
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
          <td>Staple subunit: TetR</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
 
            Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
          <td>Simple taple: TetR-Oct1</td>
 
          <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
 
          <td>Staple subunit: GCN4</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
 
          <td>Staple subunit: rGCN4</td>
 
          <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
 
          <td>Mini staple: bGCN4</td>
 
          <td>
 
            Assembled staple with minimal size that can be further engineered</td>
 
        </tr>
 
      </tbody>
 
      <td colspan="3" align="left"><b>Functional elements: </b>
 
        Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
 
        for custom applications.</td>
 
      <tbody>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
          <td>Cathepsin B-Cleavable Linker (GFLG)</td>
 
          <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits ,to make responsive
 
            staples</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
          <td>Cathepsin B Expression Cassette</td>
 
          <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
          <td>Caged NpuN Intein</td>
 
          <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
 
            units</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
          <td>Caged NpuC Intein</td>
 
          <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
 
            units</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
          <td>fgRNA processing casette</td>
 
          <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
 
          <td>Intimin anti-EGFR Nanobody</td>
 
          <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
 
            constructs</td>
 
        </tr>
 
      </tbody>
 
      <td colspan="3" align="left"><b>Readout Systems: </b>
 
        FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
 
        enabling swift testing and easy development for new systems.</td>
 
      <tbody>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
          <td>FRET-Donor: mNeonGreen-Oct1</td>
 
          <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
 
            proximity</td>
 
        </tr>
 
        <tr bgcolor="#FFD700">
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
 
          <td>FRET-Acceptor: TetR-mScarlet-I</td>
 
          <td>Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA
 
            proximity</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
          <td>Oct1 Binding Casette</td>
 
          <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
 
            proximity assay</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
 
          <td>TetR Binding Cassette</td>
 
          <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
 
            proximity assay</td>
 
        </tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
        <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
 
        <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
          <td>NLS-Gal4-VP64</td>
 
          <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
 
        </tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
        <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
 
        <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
          <td>Oct1 - 5x UAS binding casette</td>
 
          <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
 
        </tr>
 
        <tr>
 
          <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
 
          <td>TRE-minimal promoter- firefly luciferase</td>
 
          <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
 
            simulated enhancer hijacking.</td>
 
        </tr>
 
      </tbody>
 
    </table>
 
    </p>
 
  </section>
 
  <section id="1">
 
    <h1>1. Sequence overview</h1>
 
  </section>
 
</body>
 
 
</html>
 
 
<!--################################-->
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K5237001 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
 
<html>
 
 
 
<section id="2">
 
    <h1>2. Usage and Biology</h1>
 
    <p>
 
      In 2012, Jinek <i>et al.</i> discovered the use of the Clustered Regularly Interspaced Short Palindromic Repeats
 
      (CRISPR)/Cas system to induce double-strand breaks in DNA. Since then, the system has been well established as a
 
      tool for genome editing. The CRISPR/Cas system, which originates from the bacterial immune system, is constituted
 
      by a ribonucleoprotein complex. For class 1 CRISPR systems, the RNA is complexed by multiple Cas proteins, whereas
 
      class 2 systems consist of a singular protein and RNA. The class 2 type II system describes all ribonucleoprotein
 
      complexes with Cas9 (Pacesa <i>et al.</i>, 2024). They include a CRISPR RNA (crRNA), which specifies the target with a 20
 
      nucleotide (nt) spacer sequence, and a transactivating CRISPR RNA (tracrRNA), which induces the processing by the
 
      Cas protein (Jinek <i>et al.</i>, 2012) (Figure 2 A). Furthermore, a specific three
 
      nucleotide sequence (NGG) on the 3' end in the targeted DNA is needed for binding and cleavage. This is referred
 
      to as the protospacer adjacent motif (PAM) (Sternberg <i>et al.</i>, 2014). The most commonly used Cas9 protein is SpCas9
 
      or SpyCas9, which originates from Streptococcus pyogenes (Pacesa <i>et al.</i>, 2024).
 
    </p>
 
    <div class="thumb">
 
      <div class="thumbinner" style="width:60%;">
 
        <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/cas-staple-svg/background-cas9-cas12a-principle.svg"
 
          style="width:99%;" class="thumbimage">
 
        <div class="thumbcaption">
 
          <i>
 
            <b>Figure 2: The CRISPR/Cas system (adapted from Pacesa <i>et al.</i> (2024))</b>
 
            A and B, schematic structure of Cas9 and Cas12a with their sgRNA/crRNA, sitting on a DNA strand with the PAM.
 
            The spacer sequence forms base pairings with the dsDNA. In case of Cas9 the
 
            spacer is located at the 5' prime end, for Cas12a at the 3' end of the gRNA. The scaffold of the gRNA forms a specific
 
            secondary structure enabling it to bind to the Cas protein. The cut sites by the cleaving domains, RuvC and HNH, are
 
            symbolized by the scissors
 
          </i>
 
        </div>
 
      </div>
 
    </div>
 
    <p>
 
      A significant enhancement of this system was the introduction of single guide RNA (sgRNA)s, which combine the
 
      functions of a tracrRNA and crRNA (Mali <i>et al.</i>, 2013).
 
      Moreover, Cong (2013) established precise targeting of human endogenous loci by designing the 20 nt spacer sequence accordingly.
 
    </p>
 
  </section>
 
 
  <section id="3">
 
    <h1>3. Assembly and part evolution</h1>
 
    <section id="3.1">
 
      <h2>3.1 Qualtitative assesment of Cas12a orthologs</h2>
 
      <p>
 
        To select a suitable Cas12a ortholog for cronstructing the Cas sstaple, three different orhtologs were ordered from Addgene:
 
        AsCas12a (<a href="https://www.addgene.org/69982/" target="_blank">#69982</a>), LbCas12a (<a href="https://www.addgene.org/69988/" target="_blank">#69988</a>),
 
        and MbCas12a (<a href="https://www.addgene.org/115142/" target="_blank">#115142</a>).
 
        <br><br>
 
        We assessed their performance using a T7 Endonuclease I (T7EI) assay on three genomic loci: RUNX1, DNMT1, and FANCF. For
 
        comparison, we also included SpCas9 editing the CCR5 locus (Fig. 3). Editing was only observed at the
 
        RUNX1 locus, where we used the qualitative assay to compare the editing efficiencies of the Cas12a orthologs.
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner" style="width:60%;">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/engineering/fuscas-engi-fig1-1.svg"
 
            style="width:99%; border:none;" class="thumbimage">
 
            <img alt="" src="https://static.igem.wiki/teams/5237/engineering/fuscas-engi-fig1-2.svg"
 
            style="width:99%; border:none;" class="thumbimage">
 
          <div class="thumbcaption">
 
            <i>
 
              <b>Figure 3: Preliminary T7 Endonuclease I testing of Cas12a orthologs.</b>
 
              T7EI samples were run on a 2% agarose gel in 1x TBE buffer dyed with gel red. SpCas9 targeting CCR5 functions as a
 
              benchmark for proper editing. For the Cas12a orthologs, LbCas12a, AsCas12a and MbCas12a, the three loci RUNX1, DNMT1 and
 
              FANCF were targeted. Editing is indicated by an extra band compared to the negative control.
 
            </i>
 
          </div>
 
        </div>
 
      </div>
 
    </section>
 
    <section id="3.2"><h2>3.2 Quantitative comparison between AsCas12a and MbCas12a</h2>
 
      <p>
 
        Since the T7EI assay can only be used to qualitatively compare editing efficiencies, it was hard to distinguish
 
        between the better editing ortholog.<br>
 
        To accurately quantify the editing efficiency, we concted a dual luciferase assay. This assay measures the luminescence
 
        of Firefly luciferase, which decreases proportionally to the editing efficiency at the target site.
 
        To account for variations in cell count and transfection efficiency, the luminescence is normalized
 
        to Renilla luciferase, which acts as an internal control (Fig. 4).
 
        The results revealed a clear difference, with MbCas12a demonstrating significantly higher editing efficiency compared to
 
        AsCas12a (p=0.005). Based on these findings, we decided to proceed with MbCas12a.
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner" style="width:60%;">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/engineering/cas12-decision.svg"
 
            style="width:99%;" class="thumbimage">
 
          <div class="thumbcaption">
 
            <i>
 
              <b>Figure 4: Comparison of AsCas12a and MbCas12a with a dual luciferae assay.</b>
 
              Firefly luminescence intensity measured 48 h after transfection. Normalized against renilla luminescence. On the x-axis
 
              the samples Cas9 + AsCas12a , Cas9 + MbCas12a, AsCas12a and MbCas12a are depicted.
 
              Data is depicted as the mean +/- SD (n=3).
 
              Statistical analysis was performed using 1way ANOVA with Tukey's multiple comparisons test. For better clarity, only
 
              significant differences within a group between the same Cas proteins are shown.*p&lt;0.05, **p&lt;0.01, ***p&lt;0.001,
 
                ****p&lt;0.0001
 
            </i>
 
          </div>
 
        </div>
 
      </div>
 
    </section>
 
 
    <section id="3.3"><h2>3.3 MbCas12a tolerates co-transfection and simultaneous editing of different Cas proteins</h2>
 
      <p>
 
        Wanting to employ the MbCas12a as part of a Cas staple, our goal was to find out how well MbCas12a can stay active while
 
        being transfected together with SpCas9. Therefore we engineered the dual luciferase assay to allow us for testing two
 
        catalytically active Cas proteins at once. Including a well established protospacer, CCR5, into the renilla luciferase
 
        gene enables us to test the editing rates of two Cas proteins simultaneously (Fig.5 ).
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner"  style="width:60%">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/engineering/co-transf-registry.svg"
 
            style="width:99%;" class="thumbimage">
 
            <div class="thumbcaption">
 
              <i>
 
                <b>Figure 5: Testing for Simultaneous Editing with Double Cut Luciferae Assay</b>
 
                Firefly and renilla luminescence intensity is plotted, both measured 48 h after transfection. Co-transformed contains
 
                MbCas12a and SpCas9. Cas12a are the Firefly relative luminescence units (RLUs), while Cas9 are the Renilla RLUs.
 
                Data is depicted as the mean +/- SD (n=3).
 
                Statistical analysis was performed using 2way ANOVA with Tukey's multiple comparisons test. For better clarity, only
 
                significant differences within a group are shown.*p &lt; 0.05, **p &lt; 0.01, ***p &lt; 0.001, ****p  &lt; 0.0001
 
              </i>
 
            </div>
 
        </div>
 
      </div>
 
      <p>
 
        For the MbCas12a we have a highly significant editing rate in the single cut, meaning both Cas proteins are transfected,
 
        but only MbCas12a has a targeting gRNA. When introducing a targeting gRNA for SpCas9 we see no reduction in the highly
 
        significant editing of MbCas12a, strongly suggesting both Cas proteins to be able to edit simultaneously.
 
      </p>
 
    </section>
 
    <section id="3.4"><h2>3.4 MbCas12a shows editing with fgRNA</h2>
 
      <p>
 
        To further confirm if MbCas12a is compatible with our Cas staples, editing rates were tested using a fusion guide RNA
 
        (fgRNA, <a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a>)
 
        targeting two different loci: <i>FANCF</i> and <i>VEGFA</i>. To better assess the impact that the utilization of a
 
        fgRNA has on the editing rates, the sgRNAs were tested separately and in one sample.<br>
 
        Having the sgRNA with single Cas proteins in the same sample resulted in no clear
 
        difference in the editing rates (Fig. 6). The fusion of the gRNAs resulted in a lower editing rate
 
        overall. While the editing for VEGFA stayed at about 20% in all
 
        cases, the editing for FANCF dropped significantly. Nonetheless we were able to show MbCas12a editing utilizing a fgRNA.
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner" style="width:80%;">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-mbcas-2.svg"
 
            style="width:99%;" class="thumbimage">
 
          <div class="thumbcaption">
 
            <i>
 
              <b>Figure 6: Fusion gRNA Editing Rates In Combination with MbCas12a.</b>
 
              In <b>A</b> and <b>B</b> the editing rates were determined 72h after transfection via T7EI assay. Editing % was
 
              determined by measuring band intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved band))<sup>1/2</sup>. The
 
              schematic at the top shows the composition of the fgRNA. Below each spacer is the targeted gene. The symbols below
 
              indicate which parts are included in each sample. <i class="italic">A</i> and <i class="italic">B</i> display both
 
              orientations of the two spacers for VEGFA and FANCF.
 
            </i>
 
          </div>
 
        </div>
 
      </div>
 
      <p>
 
        To further assess the effect of the genomic locus on the editing rate, we included CCR5 as an additional gene target.
 
        For this assay, a fgRNA with a 20 nt long linker was included between the two spacers.
 
        The editing rate for VEGFA was again relatively consistent throughout the samples (Fig. 7).
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner" style="width:60%;">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-ccr5-2.svg"
 
            style="width:99%;" class="thumbimage">
 
          <div class="thumbcaption">
 
            <i>
 
              <b>Figure 7: Fusion gRNA Editing Rates for Multiplexing CCR5 and VEGFA</b>
 
              The editing rates were determined 72h after transfection via T7EI assay. Editing % was determined by measuring band
 
              intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved band)) <sup>1/2</sup>. The schematic at the top shows the
 
              composition of the fgRNA. Below each spacer is the targeted gene. The symbols below indicate which parts are included in
 
              each sample. Cas12a targets VEGFA and Cas9 targets CCR5.
 
            </i>
 
          </div>
 
        </div>
 
      </div>
 
    </section>
 
    <section id="3.5"><h2>3.5 MbCas12a tolerates fusion to SpCas9</h2>
 
      <p>
 
        Testing showed simultaneous editing of MbCas12a and SpCas9. Therefore we wanted to test protein-protein fusion,
 
        potentially giving us another way of Cas stapling. Our goal was to find out how well MbCas12a can stay active while
 
        being fused to SpCas9. Therefore we employed the previously engineered dual luciferase assay to allow us for testing two
 
        catalytically active Cas proteins at once, this time being fused to each other (Fig. 8).
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner" style="width:60%;">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/engineering/fusioncas-registry.svg"
 
            style="width:99%;" class="thumbimage">
 
          <div class="thumbcaption">
 
            <i>
 
              <b>Figure 8: Double cut dual luciferase assay testing Fusion Cas simultaneous editing.</b>
 
              Firefly and renilla luminescence intensity is plotted, both measured 48 h after transfection. On the x-axis the negative
 
              control, single edit and simultaneous edit, are grouped by the two Cas proteins in the fusion Cas. The fusion Cas
 
              contains MbCas12a and SpCas9. MbCas12a are the Firefly relative luminescence units (RLUs), while Cas9 are the Renilla
 
              RLUs. Data is depicted as the mean +/- SD (n=3). Statistical analysis was performed using 2way ANOVA with Tukey's multiple
 
              comparisons test. For better clarity, only significant differences within a group are shown.*p&lt;0.05, **p&lt;0.01, ***p&lt;0.001, ****p&lt;0.0001
 
            </i>
 
          </div>
 
        </div>
 
      </div>
 
      <p>
 
        For the MbCas12a we have a highly significant editing rate in the single cut, meaning only MbCas12a has a targeting
 
        gRNA. When introducing a targeting gRNA for SpCas9 we see no reduction in the highly significant editing of MbCas12a,
 
        strongly suggesting both Cas proteins in the fusion Cas to be able to edit simultaneously.
 
      </p>
 
    </section>
 
    <section id="3.6"><h2>3.6 MbCas12a fused to SpCas9 editing utilizing a fgRNA</h2>
 
      <p>
 
        The capability of MbCas12 in the fusion Cas was tested by assessing the editing rates via a T7EI assay. For this, the
 
        same target sequences as before were used, namely FANCF and VEGFA in both configurations. We included biological
 
        duplicates in this assay.<br>
 
        MbCas12a editing rates were significantly lower, dropping to about 1%. At the same time, when targeting VEGFA they
 
        resulted in a higher editing efficiency than FANCF.
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner" style="width:60%;">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-fcas-2.svg"
 
            style="width:99%;" class="thumbimage">
 
            <div>
 
              <i>
 
                <b>Figure 9: Editing rates for fusion guide RNAs with fusion Cas proteins.</b>
 
                In <b>A</b> and <b>B</b> the editing rates were determined 72h after transfection via T7EI assay. Editing % was
 
                determined by measuring band intensities; Editing % = 100 x (1 - (1- cleaved band/uncleaved band))<sup>1/2</sup>. The
 
                schematic at the top shows the composition of the fgRNA. Below each spacer is the targeted gene. The symbols below
 
                indicate which parts are included in each sample. Cas proteins linked by a dash ("-") were fused to each other.
 
                Biological replicates are marked as individual dots.
 
              </i>
 
            </div>
 
        </div>
 
      </div>
 
    </section>
 
  </section>
 
  <section id="4">
 
    <h1>4. Results</h1>
 
    <p>
 
      We extensively characterized the catalytically active MbCas12a in several assays determining the best ortholog out of
 
      three for our Cas staples, assert functional editing with a fusion guide RNA (BBa_K5237000), showing high activity
 
      while being co-transfected with SpCas9, our second staple protein's active version, and lastly a functioning fusion to
 
      SpCas9.<br>
 
      After all these successful test we were confident to test the Cas staples in action.
 
    </p>
 
    <section><h2 id="4.1">4.1 dMbCas12a Transactivation as Part of Cas Staple</h2>
 
      <p>
 
        The next step was to use the MbCas12a as part of a Cas staple to staple two DNA loci together, and thereby induce
 
        proximity between two separate functional elements. For this, an enhancer plasmid and a reporter plasmid was used. The
 
        reporter plasmid has firefly luciferase behind several repeats of a Cas9 targeted sequence. The enhancer plasmid has a
 
        Gal4 binding site behind several repeats of a Cas12a targeted sequence. By introducing a fgRNA staple and a Gal4-VP64,
 
        expression of the luciferase is induced (Fig. 10 A).
 
        Different linker lengths were tested. Cells were again normalized against ubiquitous renilla expression. Further
 
        information on our learnings from this assay can be found in the Cas staple engineering cycle iteration 2.
 
        Using no linker between the two spacers showed similar relative luciferase activity to the baseline control (Fig. 10 B).
 
        An extension of the linker from 20 nt up to 40 nt resulted in an increasingly higher expression of the reporter gene.
 
      </p>
 
      <div class="thumb">
 
        <div class="thumbinner" style="width:60%;">
 
          <img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/results-eh-2.svg"
 
            style="width:99%;" class="thumbimage">
 
          <div class="thumbcaption">
 
            <i>
 
              <b>Figure 10: Applying Fusion Guide RNAs for Cas staples.</b> <b>A</b>, schematic overview of the assay. An enhancer
 
              plasmid and a reporter plasmid are brought into proximity by a fgRNA Cas staple complex binding both plasmids. Target
 
              sequences were included in multiple repeats prior to the functional elements. Firefly luciferase serves as the reporter
 
              gene, the enhancer is constituted by multiple Gal4 repeats that are bound by a Gal4-VP64 fusion.
 
              <B>B</B>, results of using a fgRNA Cas staple for trans activation of firefly luciferase. Firefly
 
              luciferase activity was measured 48h after transfection. Normalized against ubiquitously expressed Renilla luciferase.
 
              Statistical significance was calculated with ordinary One-way ANOVA with Dunn's method for multiple comparisons (*p &lt;
 
              0.05; **p &lt; 0.01; ***p &lt; 0.001; mean +/- SD). The assay included sgRNAs and fgRNAs with linker lengths from 0 nt
 
              to 40 nt.
 
            </i>
 
          </div>
 
        </div>
 
      </div>
 
    </section>
 
  </section>
 
  <section id="5">
 
    <h1>5. References</h1>
 
    <p>Kampmann, M. (2017). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. <i>ACS Chemical Biology, 13</i>, 406–416. <a href="https://doi.org/10.1021/acschembio.7b00657" target="_blank">https://doi.org/10.1021/acschembio.7b00657</a>.</p>
 
 
    <p>Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., Maus, M. V., Pinello, L., Aryee, M. J., and Joung, J. K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. <i>Nature Biotechnology, 37</i>, 276–282. <a href="https://doi.org/10.1038/s41587-018-0011-0" target="_blank">https://doi.org/10.1038/s41587-018-0011-0</a>.</p>
 
   
 
    <p>Koonin, E. V., Gootenberg, J. S., and Abudayyeh, O. O. (2023). Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. <i>Biochemistry, 62</i>, 3465–3487. <a href="https://doi.org/10.1021/acs.biochem.3c00159" target="_blank">https://doi.org/10.1021/acs.biochem.3c00159</a>.</p>
 
   
 
    <p>Pacesa, M., Pelea, O., and Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. <i>Cell, 187</i>, 1076–1100. <a href="https://doi.org/10.1016/j.cell.2024.01.042" target="_blank">https://doi.org/10.1016/j.cell.2024.01.042</a>.</p>
 
   
 
    <p>Paul, B., and Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. <i>Biomedical Journal, 43</i>, 8–17. <a href="https://doi.org/10.1016/j.bj.2019.10.005" target="_blank">https://doi.org/10.1016/j.bj.2019.10.005</a>.</p>
 
   
 
    <p>Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., and Zhang, F. (2015). Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. <i>Cell, 163</i>, 759–771. <a href="https://doi.org/10.1016/j.cell.2015.09.038" target="_blank">https://doi.org/10.1016/j.cell.2015.09.038</a>.</p>
 
   
 
  </section>
 
</body>
 
 
</html>
 

Latest revision as of 01:09, 1 October 2024