Difference between revisions of "Part:BBa K5237006"

Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K5237006</partinfo>
 
<partinfo>BBa_K5237006</partinfo>
 
 
 
<!--Add changes below--->
 
<!--Add changes below--->
 
<html>
 
<html>
Line 27: Line 25:
 
     border: 0.5px solid black;
 
     border: 0.5px solid black;
 
     border-collapse: collapse;
 
     border-collapse: collapse;
 +
    padding: 5px;
 
   }
 
   }
  
   th,
+
   .thumbcaption {
   td {
+
    text-align: justify !important;
     padding: 1.5px;
+
  }
 +
 
 +
 
 +
  a[href ^="https://"],
 +
   .link-https {
 +
    background: none !important;
 +
     padding-right: 0px !important;
 
   }
 
   }
 
</style>
 
</style>
Line 46: Line 51:
 
       assay,
 
       assay,
 
       which was used to monitor DNA-DNA proximity in bacterial systems.</p>
 
       which was used to monitor DNA-DNA proximity in bacterial systems.</p>
     <p>&nbsp;</p>
+
     <p> </p>
 
   </section>
 
   </section>
   <div id="toc" class="toc">
+
   <div class="toc" id="toc">
 
     <div id="toctitle">
 
     <div id="toctitle">
 
       <h1>Contents</h1>
 
       <h1>Contents</h1>
Line 62: Line 67:
 
             and part evolution</span></a>
 
             and part evolution</span></a>
 
       </li>
 
       </li>
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
+
       <li class="toclevel-1 tocsection-4"><a href="#4"><span class="tocnumber">4</span> <span
 
             class="toctext">Results</span></a>
 
             class="toctext">Results</span></a>
 +
          <ul>
 +
            <li class="toclevel-2 tocsection-4.1"><a href="#4.1"><span class="tocnumber">4.1</span> <span
 +
                  class="toctext"><i>In vitro</i> DNA binding</span></a></li>
 +
            <li class="toclevel-2 tocsection-4.2"><a href="#4.2"><span class="tocnumber">4.2</span> <span
 +
                  class="toctext"><i>In vivo</i> DNA binding</span></a></li>
 +
            <li class="toclevel-2 tocsection-4.3"><a href="#4.3"><span class="tocnumber">4.3</span> <span
 +
                  class="toctext"><i>In Silico</i> Characterization using DaVinci</span></a></li>
 +
          </ul>
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsection-6"><a href="#5"><span class="tocnumber">5</span> <span
 
       <li class="toclevel-1 tocsection-6"><a href="#5"><span class="tocnumber">5</span> <span
Line 69: Line 82:
 
       <li class="toclevel-1 tocsection-8"><a href="#6"><span class="tocnumber">6</span> <span
 
       <li class="toclevel-1 tocsection-8"><a href="#6"><span class="tocnumber">6</span> <span
 
             class="toctext">References</span></a>
 
             class="toctext">References</span></a>
 +
      </li>
 
       </li>
 
       </li>
 
     </ul>
 
     </ul>
 
   </div>
 
   </div>
 
   <section>
 
   <section>
     <p>&nbsp;</p>
+
     <p><br /><br /></p>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
    <p><br></p>
+
     <div class="thumb" style="margin-top:10px;"></div>
     <div class="thumb"></div>
+
    <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
      <div class="thumbinner" style="width:550px"><img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;" class="thumbimage">
+
        src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
        <div class="thumbcaption">
+
        style="width:99%;" />
          <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
+
      <div class="thumbcaption">
        </div>
+
        <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
   
 
  
 
     <p>
 
     <p>
       <br>
+
       <br />
       The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
+
       Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene
       impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
+
       regulation,
       chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
+
       cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture
      manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
+
      remain limited, rendering it challenging to explore the full potential of the
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
 
       toolbox based on various DNA-binding proteins to address this issue.
 
       toolbox based on various DNA-binding proteins to address this issue.
 
 
     </p>
 
     </p>
 
     <p>
 
     <p>
Line 102: Line 114:
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
 
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
+
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
 
     </p>
 
     </p>
 
+
     <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding
     <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b>
+
        proteins</b>
 
       include our
 
       include our
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
 
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
       new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
+
       new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
       and can be further engineered to create alternative, simpler and more compact staples. <br>
+
       and can be further engineered to create alternative, simpler and more compact staples. <br />
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
+
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and
 +
      Basic staples. These
 
       consist of
 
       consist of
 
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
 
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our
+
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs
       interkingdom conjugation system. <br>
+
      with our
       <b>(iii)</b> As the final component of our collection, we provide parts that support the use of our <b>custom readout
+
       interkingdom conjugation system. <br />
 +
       <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom
 +
        readout
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
 
       confirm
 
       confirm
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
 
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
       readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
+
       readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking
 +
      in mammalian cells.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
      exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
+
        style="background-color: #FFD700; color: black;">The highlighted parts showed
 +
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in
 +
      the
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
 
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
       own custom Cas staples, enabling further optimization and innovation.<br>
+
       own custom Cas staples, enabling further optimization and innovation.<br />
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       <font size="4"><b>Our part collection includes:</b></font><br>
+
       <font size="4"><b>Our part collection includes:</b></font><br />
 
     </p>
 
     </p>
 
+
     <table style="width: 90%; padding-right:10px;">
     <table style="width: 90%;">
+
       <td align="left" colspan="3"><b>DNA-binding proteins: </b>
       <td colspan="3" align="left"><b>DNA-binding proteins: </b>
+
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
 
         easy assembly.</td>
 
         easy assembly.</td>
Line 138: Line 155:
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
           <td>fgRNA Entryvector MbCas12a-SpCas9</td>
+
           <td>fgRNA Entry vector MbCas12a-SpCas9</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
           <td>Entryvector for simple fgRNA cloning via SapI</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
 
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
+
           <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
 
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
+
           <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
           <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
           <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
+
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close
 +
            proximity
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
Line 161: Line 179:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td>Staple subunit: Oct1-DBD</td>
 
           <td>Staple subunit: Oct1-DBD</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
Line 167: Line 185:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td>Staple subunit: TetR</td>
 
           <td>Staple subunit: TetR</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
           <td>Simple taple: TetR-Oct1</td>
+
           <td>Simple staple: TetR-Oct1</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
         </tr>
 
         </tr>
Line 192: Line 210:
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Functional elements: </b>
+
       <td align="left" colspan="3"><b>Functional elements: </b>
         Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization
         for custom applications.</td>
+
         for custom applications</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
           <td>Cathepsin B-Cleavable Linker (GFLG)</td>
+
           <td>Cathepsin B-cleavable Linker: GFLG</td>
           <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits ,to make responsive
+
           <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive
 
             staples</td>
 
             staples</td>
 
         </tr>
 
         </tr>
Line 205: Line 223:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td>Cathepsin B Expression Cassette</td>
 
           <td>Cathepsin B Expression Cassette</td>
           <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
+
           <td>Expression Cassette for the overexpression of cathepsin B</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370012" target="_blank">BBa_K5237012</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td>Caged NpuN Intein</td>
 
           <td>Caged NpuN Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
 +
            Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370013" target="_blank">BBa_K5237013</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td>Caged NpuC Intein</td>
 
           <td>Caged NpuC Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation.
 +
            Can be used to create functionalized staples
 
             units</td>
 
             units</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370014" target="_blank">BBa_K5237014</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td>fgRNA processing casette</td>
 
           <td>fgRNA processing casette</td>
           <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
+
           <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D
 +
            genome reprograming</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370015" target="_blank">BBa_K5237015</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
 
           <td>Intimin anti-EGFR Nanobody</td>
 
           <td>Intimin anti-EGFR Nanobody</td>
 
           <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
 
           <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
 
             constructs</td>
 
             constructs</td>
 +
        </tr>
 +
        <tr>
 +
          <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
 +
          <td>incP origin of transfer</td>
 +
          <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of
 +
            delivery</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Readout Systems: </b>
+
       <td align="left" colspan="3"><b>Readout Systems: </b>
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
 
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
         enabling swift testing and easy development for new systems.</td>
+
         enabling swift testing and easy development for new systems</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
           <td><a href="https://parts.igem.org/Part:BBa_K52370016" target="_blank">BBa_K5237016</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
           <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
+
           <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 250: Line 278:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td>Oct1 Binding Casette</td>
 
           <td>Oct1 Binding Casette</td>
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
           <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
 
             proximity assay</td>
 
             proximity assay</td>
 
         </tr>
 
         </tr>
Line 261: Line 289:
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
 
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
         <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td>NLS-Gal4-VP64</td>
 
           <td>NLS-Gal4-VP64</td>
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
+
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
 
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
         <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td>Oct1 - 5x UAS binding casette</td>
 
           <td>Oct1 - 5x UAS binding casette</td>
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
+
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
Line 281: Line 309:
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>TRE-minimal promoter- firefly luciferase</td>
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
 
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
             simulated enhancer hijacking.</td>
+
             simulated enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
 
     </table>
 
     </table>
    </p>
 
 
   </section>
 
   </section>
 
   <section id="1">
 
   <section id="1">
Line 293: Line 320:
  
 
</html>
 
</html>
 
 
<!--################################-->
 
<!--################################-->
<span class='h3bb'>Sequence and Features</span>
+
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237006 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237006 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<html>
 
<html>
 
 
 
<section id="2">
 
<section id="2">
 
   <h1>2. Usage and Biology</h1>
 
   <h1>2. Usage and Biology</h1>
Line 310: Line 333:
 
     into proximity. TetR naturally functions in gram-negative bacteria by regulating the expression of the tetA gene in
 
     into proximity. TetR naturally functions in gram-negative bacteria by regulating the expression of the tetA gene in
 
     response to tetracycline. It binds selectively to palindromic tetO sequences with high affinity, forming a homodimer
 
     response to tetracycline. It binds selectively to palindromic tetO sequences with high affinity, forming a homodimer
     that dissociates upon exposure to tetracycline, allowing gene expression (Berens & Hillen, 2004). Its
+
     that dissociates upon exposure to tetracycline, allowing gene expression (Berens &amp; Hillen, 2004). Its
 
     well-understood
 
     well-understood
 
     DNA-binding properties make it a reliable component in synthetic biology, particularly in systems where controlled
 
     DNA-binding properties make it a reliable component in synthetic biology, particularly in systems where controlled
 
     DNA
 
     DNA
 
     interactions are crucial.</p>
 
     interactions are crucial.</p>
 
 
   <p>Oct1-DBD is a component of the human transcription factor Oct1, involved in immune
 
   <p>Oct1-DBD is a component of the human transcription factor Oct1, involved in immune
 
     regulation and stress responses. It binds specifically to the octamer motif (5'-ATGCAAAT-3') in promoter and
 
     regulation and stress responses. It binds specifically to the octamer motif (5'-ATGCAAAT-3') in promoter and
Line 324: Line 346:
 
     DNA-binding
 
     DNA-binding
 
     capabilities (Park <i>et al.</i>, 2013; Stepchenko <i>et al.</i>, 2021).</p>
 
     capabilities (Park <i>et al.</i>, 2013; Stepchenko <i>et al.</i>, 2021).</p>
 
 
   <p>By fusing these two proteins, the Simple staple was developed to bridge DNA sequences carrying their respective
 
   <p>By fusing these two proteins, the Simple staple was developed to bridge DNA sequences carrying their respective
 
     binding
 
     binding
Line 331: Line 352:
 
     opens
 
     opens
 
     up new possibilities for synthetic gene regulation and spatial genome organization.</p>
 
     up new possibilities for synthetic gene regulation and spatial genome organization.</p>
   
 
 
</section>
 
</section>
 
<section id="3">
 
<section id="3">
Line 337: Line 357:
 
   <p>The Oct1-DBD amino acid sequence was obtained from UniProt (<a href="https://www.uniprot.org/uniprot/P14859"
 
   <p>The Oct1-DBD amino acid sequence was obtained from UniProt (<a href="https://www.uniprot.org/uniprot/P14859"
 
       target="_blank">P14859</a>, POU domain, class 2, transcription factor 1)
 
       target="_blank">P14859</a>, POU domain, class 2, transcription factor 1)
     and DNA binding domain extracted based on information given from Park <i>et al.</i> 2013 & 2020. TetR amino acid
+
     and DNA binding domain extracted based on information given from Park <i>et al.</i> 2013 &amp; 2020. TetR amino acid
 
     sequence was obtaine from UniProt (<a href="https://www.uniprot.org/uniprotkb/P04483/entry"
 
     sequence was obtaine from UniProt (<a href="https://www.uniprot.org/uniprotkb/P04483/entry"
 
       target="_blank">P04483</a>). Coding sequences were codon optimized for <i>E. coli</i> and obtained through gene
 
       target="_blank">P04483</a>). Coding sequences were codon optimized for <i>E. coli</i> and obtained through gene
Line 346: Line 366:
 
<section id="4">
 
<section id="4">
 
   <h1>4. Results</h1>
 
   <h1>4. Results</h1>
   <h2><i>In vitro</i> DNA binding</h2>
+
   <section id="4.1">
  <p>The Simple staple construct was modified with a C-terminal His<sub>6</sub>-tag and expressed under T7 promoter.
+
    <h2>4.1 <i>In vitro</i> DNA binding</h2>
    Protein was purified with a Ni-NTA affinity column. Fractions were analysed on a 4-15 % SDS-Page (Fig. 2, left). Strong
+
    <p>The Simple staple construct was modified with a C-terminal His<sub>6</sub>-tag and expressed under T7 promoter.
    bands
+
      Protein was purified with a Ni-NTA affinity column. Fractions were analysed on a 4-15 % SDS-Page (Fig. 2, left).
    of the protein of interest are visible in the raw lysate indicating strong expression. Even though a strong band was
+
      Strong
    seen in the flow through,
+
      bands
    indicating unbound protein of interest, the purified fraction showed a strong band with almost no unspecific
+
      of the protein of interest are visible in the raw lysate indicating strong expression. Even though a strong band
    proteins co-purified. The eluate contained 1.5 mg/mL protein,
+
      was
    resulting in a total of &#8967; 3.34 mg purified protein.
+
      seen in the flow through,
  </p>
+
      indicating unbound protein of interest, the purified fraction showed a strong band with almost no unspecific
  <p>
+
      proteins co-purified. The eluate contained 1.5 mg/mL protein,
    Electrophoretic Mobility Shift Assay (EMSA) was performedn. Varying concentration of the purified Simple staple (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM)
+
      resulting in a total of 3.34 mg purified protein.
    were incubated with 0.5 µM of annealed oligos containing either the Oct1 (5'-ATGCAAAT-3') or tetO (5'TCCCTATCAGTGATAGAGA3') binding site.  
+
    </p>
    A clear, concentration dependant, shift could be detected for both target sites. This shows that the Simple staple is able to bind both DNA sequences <i>in vitro</i>.
+
    <p>
  </p>
+
      Electrophoretic Mobility Shift Assay (EMSA) was performedn. Varying concentration of the purified Simple staple
  <div class="thumb">
+
      (15
    <div class="thumbinner" style="width:57%;">
+
      µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM)
      <div style="display: flex; justify-content: center; border:none;">
+
      were incubated with 0.5 µM of annealed oligos containing either the Oct1 (5'-ATGCAAAT-3') or tetO
        <div style="border:none;">
+
      (5'TCCCTATCAGTGATAGAGA3') binding site.
          <img src="https://static.igem.wiki/teams/5237/wetlab-results/bs-sds-page-tetr-oct1-fus.svg" style="height: 300px; width: auto;" class="thumbimage">
+
      A clear, concentration dependant, shift could be detected for both target sites. This shows that the Simple staple
 +
      is able to bind both DNA sequences <i>in vitro</i>.
 +
    </p>
 +
    <div class="thumb">
 +
      <div class="thumbinner" style="width:57%;">
 +
        <div style="display: flex; justify-content: center; border:none;">
 +
          <div style="border:none;">
 +
            <img class="thumbimage"
 +
              src="https://static.igem.wiki/teams/5237/wetlab-results/bs-sds-page-tetr-oct1-fus.svg"
 +
              style="height: 300px; width: auto;" />
 +
          </div>
 +
          <div style="border:none;">
 +
            <img class="thumbimage" src="https://static.igem.wiki/teams/5237/wetlab-results/sist-emsa-staple.svg"
 +
              style="height: 300px; width: auto;" />
 +
          </div>
 
         </div>
 
         </div>
         <div style="border:none;">
+
         <div class="thumbcaption">
           <img src="https://static.igem.wiki/teams/5237/wetlab-results/sist-emsa-staple.svg" style="height: 300px; width: auto;" class="thumbimage">
+
           <i><b>Figure 2: SDS-PAGE and EMSA analysis of the TetR-Oct1 fusion protein.</b></i> Left: Fractions were
 +
          loaded
 +
          on a 4-15 %
 +
          SDS-PAGE gel and stained with coomassie blue. Lane 1: raw lysate, Lane 2: flow through, Lane 3: purified
 +
          fraction.
 +
          Right: Electrophoretic Mobility Shift Assay of tetR-Oct1 in PBS (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM
 +
          protein with 0.5 µM DNA)
 
         </div>
 
         </div>
 
       </div>
 
       </div>
      <div class="thumbcaption">
+
    </div>
        <i><b>Figure 2: SDS-PAGE and EMSA analysis of the TetR-Oct1 fusion protein.</b></i> Left: Fractions were loaded on a 4-15 %
+
  </section>
         SDS-PAGE gel and stained with coomassie blue. Lane 1: raw lysate, Lane 2: flow through, Lane 3: purified fraction.
+
  <section id="4.2">
         Right: Electrophoretic Mobility Shift Assay of tetR-Oct1 in PBS (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM protein with 0.5 µM DNA)
+
    <h2>4.2 <i>In vivo</i> DNA binding</h2>
 +
    <p>The Förster Resonance Energy Transfer (FRET) assay was developed using a two-plasmid system in bacterial cells.
 +
      The
 +
      expression plasmid contains a tetR
 +
      binding site and expresses three key proteins under the control of a single T7 promoter in a polycistronic operon:
 +
      (1) tetR-Oct1, our simple staple fusion protein that acts as a bivalent DNA-binding protein, tethering two
 +
      plasmids
 +
      via tetR and Oct1 binding sites (<a href="https://parts.igem.org/Part:BBa_K5237019"
 +
        target="_blank">BBa_K5237019</a>, <a href="https://parts.igem.org/Part:BBa_K5237018">BBa_K5237018</a>); (2)
 +
      Oct1-mNeonGreen (<a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K2375016</a>), serving as
 +
      the FRET donor; and (3) tetR-mScarlet-I (<a href="https://parts.igem.org/Part:BBa_K5237017"
 +
         target="_blank">BBa_K2375017</a>), the FRET
 +
      acceptor. This ensures all three proteins are co-expressed in similar stoichiometry. The folding plasmid contains
 +
      an
 +
      Oct1 binding site for the staple and FRET donor binding.</p>
 +
    <p>
 +
      When tetR-Oct1 binds its respective sites on both plasmids, it brings mNeonGreen and mScarlet-I into close
 +
      proximity, facilitating FRET between the two fluorophores. Successful stapling of the plasmids results in
 +
      increased
 +
      energy transfer from mNeonGreen to mScarlet-I, which can be detected by exciting mNeonGreen and measuring enhanced
 +
      emission from mScarlet-I. A positive control, consisting of a direct fusion of mNeonGreen and mScarlet-I, ensures
 +
      maximal FRET efficiency and serves as a benchmark for the assay.</p>
 +
    <p>
 +
      Samples were induced with 0.05 mM IPTG and fluoresence intensity of mNeonGreen, mScarlet-I and FRET was measured
 +
      after 18 h.
 +
      he positive control exhibited significantly higher fluorescence intensity for both mNeonGreen and mScarlet-I,
 +
      indicating
 +
      stronger expression levels of the FRET pair in this condition. Both the negative control and the staple showed
 +
      comparable fluorescence for mNeonGreen and mScarlet-I. A small but significant difference was observed for
 +
      mNeonGreen (p = 0.0416).
 +
      Importantly the measured FRET signal was significantly higher for the sample compared to the negative control (p
 +
      &lt; 0.0001).
 +
      This indicates that the TetR-Oct1 staple successfully brought the two plasmids into close proximity, allowing for
 +
      FRET to occur.
 +
    </p>
 +
    <div class="thumb">
 +
      <div class="thumbinner" style="width:50%;">
 +
        <img alt="FRET_tetR-Oct1" class="thumbimage"
 +
          src="https://static.igem.wiki/teams/5237/wetlab-results/sist-fret-final.svg" style="width:99%;" />
 +
         <div class="thumbcaption">
 +
          <i><b>Figure 3: Fluorescence measurement of mNeonGreen, mScarlet-I and FRET.</b> Fluorescence intensity of
 +
            mNeonGreen
 +
            (ex. 490 nm, em. 530 nm), mScarlet-I (ex. 560 nm, em. 600 nm), and FRET (ex. 490 nm, em. 600 nm) was
 +
            measured
 +
            18 hours
 +
            after IPTG induction (0.05 mM) and normalized to cell count (OD<sub>600</sub>).
 +
            Statistical significance was determined with Ordinary two-way ANOVA withŠidák's multiple comparison test,
 +
            with
 +
            a single pooled variance. *p &lt; 0.05, ****p &lt; 0.001. Data is depicted as mean (n=3) ± SD</i>
 +
        </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
   </div>
+
   </section>
 
+
   <section id="4.3">
   <h2><i>In vivo</i> DNA binding</h2>
+
    <h2>4.3 <i>In Silico</i> Characterization using DaVinci</h2>
  <p>The Förster Resonance Energy Transfer (FRET) assay was developed using a two-plasmid system in bacterial cells. The
+
    <p>
    expression plasmid contains a tetR
+
      We developed the in silico model <a href="https://2024.igem.wiki/heidelberg/model" target="_blank">DaVinci</a>
    binding site and expresses three key proteins under the control of a single T7 promoter in a polycistronic operon:
+
       for rapid engineering
    (1) tetR-Oct1, our simple staple fusion protein that acts as a bivalent DNA-binding protein, tethering two plasmids
+
      and development of our PiCasSO system.
    via tetR  and Oct1 binding sites (<a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a>, <a href="https://parts.igem.org/Part:BBa_K5237018">BBa_K5237018</a>); (2) Oct1-mNeonGreen (<a href="https://parts.igem.org/Part:BBa_K5237016"
+
       DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system,
       target="_blank">BBa_K2375016</a>), serving as the FRET donor; and (3) tetR-mScarlet-I (<a
+
      refine experimental parameters, and find optimal connections between protein staples and target DNA.
       href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K2375017</a>), the FRET
+
      We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and
    acceptor. This ensures all three proteins are co-expressed in similar stoichiometry. The folding plasmid contains an
+
      purified
    Oct1 binding site for the staple and FRET donor binding.</p>
+
      proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of
  <p>
+
      further
    When tetR-Oct1 binds its respective sites on both plasmids, it brings mNeonGreen and mScarlet-I into close
+
      experiments. Additionally, we apply the same approach to our part collection.
    proximity, facilitating FRET between the two fluorophores. Successful stapling of the plasmids results in increased
+
      DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged
    energy transfer from mNeonGreen to mScarlet-I, which can be detected by exciting mNeonGreen and measuring enhanced
+
      dna
    emission from mScarlet-I. A positive control, consisting of a direct fusion of mNeonGreen and mScarlet-I, ensures
+
      dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the
    maximal FRET efficiency and serves as a benchmark for the assay.</p>
+
      dna-binding
  <p>
+
      interaction.
    Samples were induced with 0.05 mM IPTG and fluoresence intensity of mNeonGreen, mScarlet-I and FRET was measured
+
     </p>
    after 18 h.
+
     <!--Image waiting for tools page upload
    he positive control exhibited significantly higher fluorescence intensity for both mNeonGreen and mScarlet-I,
+
     <div class="thumb">
    indicating
+
      <div class="thumbinner" style="width:80%;">
    stronger expression levels of the FRET pair in this condition. Both the negative control and the staple showed
+
        <img alt=""src=""  
    comparable fluorescence for mNeonGreen and mScarlet-I. A small but significant difference was observed for
+
         style="width: 99;" class="thumbimage">
    mNeonGreen (p = 0.0416).
+
        <div class="thumbcaption">
     Importantly the measured FRET signal was significantly higher for the sample compared to the negative control (p
+
          <i><b>Figure 4: DaVinci model prediction of the Simple staple constructs</b></i>
     &lt; 0.0001).
+
    This indicates that the TetR-Oct1 staple successfully brought the two plasmids into close proximity, allowing for
+
     FRET to occur.
+
  </p>
+
  <div class="thumb">
+
    <div class="thumbinner" style="width:50%;">
+
      <img alt="FRET_tetR-Oct1" src="https://static.igem.wiki/teams/5237/wetlab-results/sist-fret-final.svg"
+
         style="width:99%;" class="thumbimage">
+
      <div class="thumbcaption">
+
        <i><b>Figure 3: Fluorescence measurement of mNeonGreen, mScarlet-I and FRET.</b> Fluorescence intensity of mNeonGreen
+
          (ex. 490 nm, em. 530 nm), mScarlet-I (ex. 560 nm, em. 600 nm), and FRET (ex. 490 nm, em. 600 nm) was measured 18 hours
+
          after IPTG induction (0.05 mM) and normalized to cell count (OD<sub>600</sub>).
+
          Statistical significance was determined with Ordinary two-way ANOVA withŠidák's multiple comparison test, with
+
          a single pooled variance. *p &lt; 0.05, ****p &lt; 0.001. Data is depicted as mean (n=3) &#177; SD</i>
+
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 +
    -->
 +
  </section>
 
</section>
 
</section>
 +
 
<section id="5">
 
<section id="5">
 
   <h1>5. Conclusion</h1>
 
   <h1>5. Conclusion</h1>
 
   <p>The Simple Staple (Oct1-DBD-TetR fusion) is a versatile bivalent DNA-binding protein that brings two DNA sequences
 
   <p>The Simple Staple (Oct1-DBD-TetR fusion) is a versatile bivalent DNA-binding protein that brings two DNA sequences
 
     into close proximity. It was successfully applied to establish a FRET-based assay to monitor DNA-DNA proximity in
 
     into close proximity. It was successfully applied to establish a FRET-based assay to monitor DNA-DNA proximity in
     bacterial systems. The results demonstrate the Simple Staple's functionality in both <i>in vitro</i> and <i>in vivo</i> settings,
+
     bacterial systems. The results demonstrate the Simple Staple's functionality in both <i>in vitro</i> and <i>in
 +
      vivo</i> settings,
 
     highlighting its potential for future applications in gene regulation and spatial genome organization.</p>
 
     highlighting its potential for future applications in gene regulation and spatial genome organization.</p>
 
</section>
 
</section>
 
<section id="6">
 
<section id="6">
 
   <h1>6. References</h1>
 
   <h1>6. References</h1>
   <p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg<sup>2+</sup> Reveals Mechanism of Antibiotic Resistance. <em>Journal of Molecular Biology, 247</em>(2), 260–280. <a href="https://doi.org/10.1006/jmbi.1994.0138" target="_blank">https://doi.org/10.1006/jmbi.1994.0138</a></p>
+
   <p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., &amp; Saenger, W. (1995). The Complex Formed Between Tet Repressor
 
+
    and Tetracycline-Mg<sup>2+</sup> Reveals Mechanism of Antibiotic Resistance. <em>Journal of Molecular Biology,
<p>Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. <em>Nucleic Acids Research, 31</em>(12), 3050–3056.</p>
+
      247</em>(2), 260–280. <a href="https://doi.org/10.1006/jmbi.1994.0138"
 
+
      target="_blank">https://doi.org/10.1006/jmbi.1994.0138</a></p>
<p>Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of Sequence-Specific DNA Binding by the Transcription Factor Oct-1. <em>Biochemistry, 39</em>(25), 7570–7579. <a href="https://doi.org/10.1021/bi000377h" target="_blank">https://doi.org/10.1021/bi000377h</a></p>
+
  <p>Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., &amp; Hillen, W. (2003). Single-chain Tet transregulators.
 
+
    <em>Nucleic Acids Research, 31</em>(12), 3050–3056.
<p>Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. <em>Nature Structural Biology, 7</em>(3), 215–219. <a href="https://doi.org/10.1038/73324" target="_blank">https://doi.org/10.1038/73324</a></p>
+
  </p>
 
+
  <p>Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., &amp; Ladbury, J. E. (2000). Characterization of
<p>Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. <em>Journal of Bioscience and Bioengineering, 116</em>(2), 246–252. <a href="https://doi.org/10.1016/j.jbiosc.2013.02.005" target="_blank">https://doi.org/10.1016/j.jbiosc.2013.02.005</a></p>
+
    Sequence-Specific DNA Binding by the Transcription Factor Oct-1. <em>Biochemistry, 39</em>(25), 7570–7579. <a
 
+
      href="https://doi.org/10.1021/bi000377h" target="_blank">https://doi.org/10.1021/bi000377h</a></p>
<p>Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim, S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell Biotransformation Efficiency. <em>Frontiers in Bioengineering and Biotechnology, 7</em>. <a href="https://doi.org/10.3389/fbioe.2019.00444" target="_blank">https://doi.org/10.3389/fbioe.2019.00444</a></p>
+
  <p>Orth, P., Schnappinger, D., Hillen, W., Saenger, W., &amp; Hinrichs, W. (2000). Structural basis of gene regulation
 
+
    by the tetracycline inducible Tet repressor-operator system. <em>Nature Structural Biology, 7</em>(3), 215–219. <a
<p>Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., & Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. <em>Scientific Reports, 11</em>(1), 18808. <a href="https://doi.org/10.1038/s41598-021-98323-y" target="_blank">https://doi.org/10.1038/s41598-021-98323-y</a></p>
+
      href="https://doi.org/10.1038/73324" target="_blank">https://doi.org/10.1038/73324</a></p>
 
+
  <p>Park, J. H., Kwon, H. W., &amp; Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1
<p>Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). Improved single-chain transactivators of the Tet-On gene expression system. <em>BMC Biotechnology, 7</em>, 6. <a href="https://doi.org/10.1186/1472-6750-7-6" target="_blank">https://doi.org/10.1186/1472-6750-7-6</a></p>
+
    DNA-binding domain suitable for in vitro screening of engineered proteins. <em>Journal of Bioscience and
 
+
      Bioengineering, 116</em>(2), 246–252. <a href="https://doi.org/10.1016/j.jbiosc.2013.02.005"
 
+
      target="_blank">https://doi.org/10.1016/j.jbiosc.2013.02.005</a></p>
 +
  <p>Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim,
 +
    S.-K., &amp; Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell
 +
    Biotransformation Efficiency. <em>Frontiers in Bioengineering and Biotechnology, 7</em>. <a
 +
      href="https://doi.org/10.3389/fbioe.2019.00444" target="_blank">https://doi.org/10.3389/fbioe.2019.00444</a></p>
 +
  <p>Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., &amp;
 +
    Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells
 +
    from stress. <em>Scientific Reports, 11</em>(1), 18808. <a href="https://doi.org/10.1038/s41598-021-98323-y"
 +
      target="_blank">https://doi.org/10.1038/s41598-021-98323-y</a></p>
 +
  <p>Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., &amp; Das, A. T. (2007).
 +
    Improved single-chain transactivators of the Tet-On gene expression system. <em>BMC Biotechnology, 7</em>, 6. <a
 +
      href="https://doi.org/10.1186/1472-6750-7-6" target="_blank">https://doi.org/10.1186/1472-6750-7-6</a></p>
 
</section>
 
</section>
</body>
 
  
 
</html>
 
</html>

Revision as of 22:15, 30 September 2024

BBa_K5237006

Simple-Staple: TetR-Oct1

The Simple Staple (Oct1-DBD-TetR fusion) is a bivalent DNA-binding protein designed to bring two DNA sequences into close proximity, combining the human Oct1 DNA-binding domain (Oct1-DBD) and the bacterial tetracycline repressor protein (TetR). Oct1-DBD recognizes the octamer motif, while TetR binds specifically to the tetO operator sequences. This Simple Staple was applied to establish a Förster Resonance Energy Transfer (FRET)-based assay, which was used to monitor DNA-DNA proximity in bacterial systems.

 



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene regulation, cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox based on various DNA-binding proteins to address this issue.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples, ensuring functionality in vitro and in vivo. We took special care to include parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling and can be further engineered to create alternative, simpler and more compact staples.
(ii) As functional elements, we list additional parts that enhance the functionality of our Cas and Basic staples. These consist of protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling in vivo. Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that support the use of our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation.

Our part collection includes:

DNA-binding proteins: The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring easy assembly.
BBa_K5237000 fgRNA Entry vector MbCas12a-SpCas9 Entryvector for simple fgRNA cloning via SapI
BBa_K5237001 Staple subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple
BBa_K5237002 Staple subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression Cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units
BBa_K5237014 fgRNA processing casette Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large constructs
BBa_K4643003 incP origin of transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells enabling swift testing and easy development for new systems
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promotor, mCherry Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS binding casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal promoter- firefly luciferase Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 493
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

The Simple Staple (Oct1-DBD-TetR fusion) combines the well-characterized bacterial transcriptional repressor TetR with the human transcription factor Oct1-DBD, creating a versatile DNA-binding protein capable of bringing two DNA sequences into proximity. TetR naturally functions in gram-negative bacteria by regulating the expression of the tetA gene in response to tetracycline. It binds selectively to palindromic tetO sequences with high affinity, forming a homodimer that dissociates upon exposure to tetracycline, allowing gene expression (Berens & Hillen, 2004). Its well-understood DNA-binding properties make it a reliable component in synthetic biology, particularly in systems where controlled DNA interactions are crucial.

Oct1-DBD is a component of the human transcription factor Oct1, involved in immune regulation and stress responses. It binds specifically to the octamer motif (5'-ATGCAAAT-3') in promoter and enhancer regions, stabilizing DNA binding through its POU-specific and POU homeodomains (Lundbäck et al., 2000). Previous studies have demonstrated that Oct1-DBD can be readily fused to other proteins, increasing solubility and preserving DNA-binding capabilities (Park et al., 2013; Stepchenko et al., 2021).

By fusing these two proteins, the Simple staple was developed to bridge DNA sequences carrying their respective binding motifs. This bivalent DNA-binding system was successfully applied in our project to establish a FRET-based proximity assay, enabling real-time monitoring of DNA interactions in bacterial systems. This versatile and modular approach opens up new possibilities for synthetic gene regulation and spatial genome organization.

3. Assembly and part evolution

The Oct1-DBD amino acid sequence was obtained from UniProt (P14859, POU domain, class 2, transcription factor 1) and DNA binding domain extracted based on information given from Park et al. 2013 & 2020. TetR amino acid sequence was obtaine from UniProt (P04483). Coding sequences were codon optimized for E. coli and obtained through gene synthesis. The proteins were genetically linked with a short GSGGS linker.

4. Results

4.1 In vitro DNA binding

The Simple staple construct was modified with a C-terminal His6-tag and expressed under T7 promoter. Protein was purified with a Ni-NTA affinity column. Fractions were analysed on a 4-15 % SDS-Page (Fig. 2, left). Strong bands of the protein of interest are visible in the raw lysate indicating strong expression. Even though a strong band was seen in the flow through, indicating unbound protein of interest, the purified fraction showed a strong band with almost no unspecific proteins co-purified. The eluate contained 1.5 mg/mL protein, resulting in a total of ⌇ 3.34 mg purified protein.

Electrophoretic Mobility Shift Assay (EMSA) was performedn. Varying concentration of the purified Simple staple (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM) were incubated with 0.5 µM of annealed oligos containing either the Oct1 (5'-ATGCAAAT-3') or tetO (5'TCCCTATCAGTGATAGAGA3') binding site. A clear, concentration dependant, shift could be detected for both target sites. This shows that the Simple staple is able to bind both DNA sequences in vitro.

Figure 2: SDS-PAGE and EMSA analysis of the TetR-Oct1 fusion protein. Left: Fractions were loaded on a 4-15 % SDS-PAGE gel and stained with coomassie blue. Lane 1: raw lysate, Lane 2: flow through, Lane 3: purified fraction. Right: Electrophoretic Mobility Shift Assay of tetR-Oct1 in PBS (15 µM, 7.5 µM, 3.75 µM, 1.875 µM, 0.9375 µM protein with 0.5 µM DNA)

4.2 In vivo DNA binding

The Förster Resonance Energy Transfer (FRET) assay was developed using a two-plasmid system in bacterial cells. The expression plasmid contains a tetR binding site and expresses three key proteins under the control of a single T7 promoter in a polycistronic operon: (1) tetR-Oct1, our simple staple fusion protein that acts as a bivalent DNA-binding protein, tethering two plasmids via tetR and Oct1 binding sites (BBa_K5237019, BBa_K5237018); (2) Oct1-mNeonGreen (BBa_K2375016), serving as the FRET donor; and (3) tetR-mScarlet-I (BBa_K2375017), the FRET acceptor. This ensures all three proteins are co-expressed in similar stoichiometry. The folding plasmid contains an Oct1 binding site for the staple and FRET donor binding.

When tetR-Oct1 binds its respective sites on both plasmids, it brings mNeonGreen and mScarlet-I into close proximity, facilitating FRET between the two fluorophores. Successful stapling of the plasmids results in increased energy transfer from mNeonGreen to mScarlet-I, which can be detected by exciting mNeonGreen and measuring enhanced emission from mScarlet-I. A positive control, consisting of a direct fusion of mNeonGreen and mScarlet-I, ensures maximal FRET efficiency and serves as a benchmark for the assay.

Samples were induced with 0.05 mM IPTG and fluoresence intensity of mNeonGreen, mScarlet-I and FRET was measured after 18 h. he positive control exhibited significantly higher fluorescence intensity for both mNeonGreen and mScarlet-I, indicating stronger expression levels of the FRET pair in this condition. Both the negative control and the staple showed comparable fluorescence for mNeonGreen and mScarlet-I. A small but significant difference was observed for mNeonGreen (p = 0.0416). Importantly the measured FRET signal was significantly higher for the sample compared to the negative control (p < 0.0001). This indicates that the TetR-Oct1 staple successfully brought the two plasmids into close proximity, allowing for FRET to occur.

FRET_tetR-Oct1
Figure 3: Fluorescence measurement of mNeonGreen, mScarlet-I and FRET. Fluorescence intensity of mNeonGreen (ex. 490 nm, em. 530 nm), mScarlet-I (ex. 560 nm, em. 600 nm), and FRET (ex. 490 nm, em. 600 nm) was measured 18 hours after IPTG induction (0.05 mM) and normalized to cell count (OD600). Statistical significance was determined with Ordinary two-way ANOVA withŠidák's multiple comparison test, with a single pooled variance. *p < 0.05, ****p < 0.001. Data is depicted as mean (n=3) ± SD

4.3 In Silico Characterization using DaVinci

We developed the in silico model DaVinci for rapid engineering and development of our PiCasSO system. DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA. We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and purified proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of further experiments. Additionally, we apply the same approach to our part collection. DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged dna dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the dna-binding interaction.

5. Conclusion

The Simple Staple (Oct1-DBD-TetR fusion) is a versatile bivalent DNA-binding protein that brings two DNA sequences into close proximity. It was successfully applied to establish a FRET-based assay to monitor DNA-DNA proximity in bacterial systems. The results demonstrate the Simple Staple's functionality in both in vitro and in vivo settings, highlighting its potential for future applications in gene regulation and spatial genome organization.

6. References

Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg2+ Reveals Mechanism of Antibiotic Resistance. Journal of Molecular Biology, 247(2), 260–280. https://doi.org/10.1006/jmbi.1994.0138

Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. Nucleic Acids Research, 31(12), 3050–3056.

Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of Sequence-Specific DNA Binding by the Transcription Factor Oct-1. Biochemistry, 39(25), 7570–7579. https://doi.org/10.1021/bi000377h

Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural Biology, 7(3), 215–219. https://doi.org/10.1038/73324

Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. Journal of Bioscience and Bioengineering, 116(2), 246–252. https://doi.org/10.1016/j.jbiosc.2013.02.005

Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim, S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell Biotransformation Efficiency. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00444

Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., & Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. Scientific Reports, 11(1), 18808. https://doi.org/10.1038/s41598-021-98323-y

Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). Improved single-chain transactivators of the Tet-On gene expression system. BMC Biotechnology, 7, 6. https://doi.org/10.1186/1472-6750-7-6