Difference between revisions of "Part:BBa K5398020"
(→Adhesive test) |
|||
Line 1: | Line 1: | ||
This section encodes the TRn4-mfp5 fusion protein, which combines the adhesive properties of mfp5 from the mussel foot protein family with the unique functionality of the four tandem repeats of the squid-inspired building block (TRn4). In our project, we utilized this protein as a 'dual-sided adhesive' and examined its adhesive ability through various production and purification strategies. The dual-sided adhesion of the TRn4-mfp5 fusion protein leverages the strengths of both mfp5 and TRn4. Mfp5, through the oxidation of tyrosine into dopamine, forms strong π-π stacking interactions and hydrogen bonds with a wide range of surfaces. On the other side, TRn4's β-sheet structures enable strong hydrogen bonding between protein strands, which can adhere to other TRn proteins, providing robust structural integrity. Together, these two mechanisms allow the fusion protein to adhere effectively to different surfaces simultaneously. | This section encodes the TRn4-mfp5 fusion protein, which combines the adhesive properties of mfp5 from the mussel foot protein family with the unique functionality of the four tandem repeats of the squid-inspired building block (TRn4). In our project, we utilized this protein as a 'dual-sided adhesive' and examined its adhesive ability through various production and purification strategies. The dual-sided adhesion of the TRn4-mfp5 fusion protein leverages the strengths of both mfp5 and TRn4. Mfp5, through the oxidation of tyrosine into dopamine, forms strong π-π stacking interactions and hydrogen bonds with a wide range of surfaces. On the other side, TRn4's β-sheet structures enable strong hydrogen bonding between protein strands, which can adhere to other TRn proteins, providing robust structural integrity. Together, these two mechanisms allow the fusion protein to adhere effectively to different surfaces simultaneously. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Characterization=== | ===Characterization=== | ||
− | In order to obtain proteins, test suitable expression conditions, and evaluate the function of TRn4-mfp5, we chose three different expression vectors (Fig. | + | In order to obtain proteins, test suitable expression conditions, and evaluate the function of TRn4-mfp5, we chose three different expression vectors (Fig. 1)—pET-28a(+), pET SUMO, and pET-21a(+)—and tried different strategies for TRn4-mfp5 protein production and purification.</p> |
<html lang="zh"> | <html lang="zh"> | ||
Line 79: | Line 23: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/three-plasmid-trn4mfp5.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/three-plasmid-trn4mfp5.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 1 | Three different vectors used in protein expression.</b></p> |
<p><b>a.</b> The plasmid map of pET-28a(+)-His-SUMO-TRn4-mfp5; | <p><b>a.</b> The plasmid map of pET-28a(+)-His-SUMO-TRn4-mfp5; | ||
<b>b.</b> The plasmid map of pET SUMO-TRn4-mfp5; | <b>b.</b> The plasmid map of pET SUMO-TRn4-mfp5; | ||
Line 106: | Line 50: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/16-37-lb-pet21a.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/16-37-lb-pet21a.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 2 | Comparison of fusion protein expression in different temperature use vector pET-21a(+).</b></p> |
<p> | <p> | ||
Lanes 1-6 (LB 37°C 4 h): | Lanes 1-6 (LB 37°C 4 h): | ||
Line 148: | Line 92: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/tb-lb-prt21a.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/tb-lb-prt21a.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 3 | Comparison of fusion protein expression in LB and TB media use vector pET-21a(+).</b></p> |
<p> | <p> | ||
Line 195: | Line 139: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/rostta-bl21-de3-trn4-mfp5png.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/rostta-bl21-de3-trn4-mfp5png.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 4 | Comparison of fusion protein expression in <i>E. coli</i> strains BL21(DE3) and Rosetta.</b></p> |
<p> | <p> | ||
1. Protein ladder; | 1. Protein ladder; | ||
Line 215: | Line 159: | ||
<p>As shown in Figures 4-6, the target protein was present in the pellet after cell lysis. Therefore, we denatured the pellet of the fusion protein TRn4-mfp5 with 8M urea overnight and renatured it through dialysis. This process resulted in some protein loss, as confirmed by SDS-PAGE analysis. </p> | <p>As shown in Figures 4-6, the target protein was present in the pellet after cell lysis. Therefore, we denatured the pellet of the fusion protein TRn4-mfp5 with 8M urea overnight and renatured it through dialysis. This process resulted in some protein loss, as confirmed by SDS-PAGE analysis. </p> | ||
<p>Consequently, we proceeded to purify the fusion protein TRn4-mfp5 using a Ni-NTA Gravity Column.</p> | <p>Consequently, we proceeded to purify the fusion protein TRn4-mfp5 using a Ni-NTA Gravity Column.</p> | ||
− | <p>The target protein bands were present in lanes 4 to 7, indicating successful expression of the target protein, with a particularly strong band in the supernatant after denaturation (Fig. | + | <p>The target protein bands were present in lanes 4 to 7, indicating successful expression of the target protein, with a particularly strong band in the supernatant after denaturation (Fig. 5, lane 7). After purification, the target protein was mainly found in the 150 mM and 300 mM imidazole elution fractions.</p> |
<html lang="zh"> | <html lang="zh"> | ||
Line 235: | Line 179: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/purification-trn4-mfp5.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/purification-trn4-mfp5.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 5 | SDS-PAGE of purified fusion protein TRn4-mfp5(35.4 kDa) uses vector pET-SUMO.</b></p> |
<p> | <p> | ||
Lane 1: Protein - Binding buffer; | Lane 1: Protein - Binding buffer; | ||
Line 271: | Line 215: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/wb-all-final.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/wb-all-final.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 6 | Western Blot of purified fusion protein TRn4-mfp5(35.4 kDa) uses vector pET-SUMO.</b></p> |
<p> | <p> | ||
<p><b>a.</b> Western blot of the pre-expressed protein;<b>b.</b> Western blot after column purification of the supernatant following denaturation. | <p><b>a.</b> Western blot of the pre-expressed protein;<b>b.</b> Western blot after column purification of the supernatant following denaturation. | ||
Line 299: | Line 243: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/protein-freeze-actual-picture-new.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/protein-freeze-actual-picture-new.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 7 | The protein sample freeze-dried by a lyophilizer.</b></p> |
</div> | </div> | ||
</body> | </body> | ||
Line 324: | Line 268: | ||
<div class="module"> | <div class="module"> | ||
<img src="https://static.igem.wiki/teams/5398/trn4-mfp5/part-fig10.webp" width="700" height="auto" alt="Protein purification"> | <img src="https://static.igem.wiki/teams/5398/trn4-mfp5/part-fig10.webp" width="700" height="auto" alt="Protein purification"> | ||
− | <p><b>Fig. | + | <p><b>Fig. 8 | Adhesive ability test of fusion protein on plastic surface</b></p> |
</div> | </div> | ||
</body> | </body> |
Revision as of 03:45, 30 September 2024
This section encodes the TRn4-mfp5 fusion protein, which combines the adhesive properties of mfp5 from the mussel foot protein family with the unique functionality of the four tandem repeats of the squid-inspired building block (TRn4). In our project, we utilized this protein as a 'dual-sided adhesive' and examined its adhesive ability through various production and purification strategies. The dual-sided adhesion of the TRn4-mfp5 fusion protein leverages the strengths of both mfp5 and TRn4. Mfp5, through the oxidation of tyrosine into dopamine, forms strong π-π stacking interactions and hydrogen bonds with a wide range of surfaces. On the other side, TRn4's β-sheet structures enable strong hydrogen bonding between protein strands, which can adhere to other TRn proteins, providing robust structural integrity. Together, these two mechanisms allow the fusion protein to adhere effectively to different surfaces simultaneously.
Contents
Characterization
In order to obtain proteins, test suitable expression conditions, and evaluate the function of TRn4-mfp5, we chose three different expression vectors (Fig. 1)—pET-28a(+), pET SUMO, and pET-21a(+)—and tried different strategies for TRn4-mfp5 protein production and purification.</p>
Fig. 1 | Three different vectors used in protein expression.
a. The plasmid map of pET-28a(+)-His-SUMO-TRn4-mfp5; b. The plasmid map of pET SUMO-TRn4-mfp5; c. The plasmid map of pET-21a(+)-TRn4-mfp5.
Protein Expression
We expressed the protein in E. coli BL21(DE3) using LB medium. After incubation at 16°C for 20 h or at 37°C for 4 hours, we found that the protein expressed better under the 16°C for 20 h condition, as indicated by the stronger bands in Fig. 4. This suggests that lower temperature incubation may enhance protein solubility and proper folding, resulting in improved yield.
Fig. 2 | Comparison of fusion protein expression in different temperature use vector pET-21a(+).
Lanes 1-6 (LB 37°C 4 h): 1. Protein ladder; 2. total liquid (+IPTG); 3. supernatant (+IPTG); 4. precipitate (+IPTG); 5. total liquid (-IPTG); 6. supernatant (-IPTG); 7. precipitate (-IPTG); Lanes 8-13 (TB 16°C 20 h): 8. Protein ladder; 9. total liquid (+IPTG); 10. supernatant (+IPTG); 11. precipitate (+IPTG); 12. total liquid (-IPTG); 13. supernatant (-IPTG); 14. precipitate (-IPTG).
Fig. 3 | Comparison of fusion protein expression in LB and TB media use vector pET-21a(+).
1. Protein ladder; Lanes 2-7 (LB 16°C 20 h): 2. total liquid (+IPTG); 3. supernatant (+IPTG); 4. precipitate (+IPTG); 5. total liquid (-IPTG); 6. supernatant (-IPTG); 7. precipitate (-IPTG); Lanes 8-13 (TB 16°C 20 h): 8. Protein ladder; 9. total liquid (+IPTG); 10. supernatant (+IPTG); 11. precipitate (+IPTG); 12. total liquid (-IPTG); 13. supernatant (-IPTG); 14. precipitate (-IPTG).
While Rosetta is optimized to address these rare codon issues and can be advantageous when expressing eukaryotic proteins with high rare codon usage, our results showed that protein expression levels were higher in the BL21(DE3) strain. This discrepancy could be due to several factors. One possibility is that our target protein does not contain a sufficient number of rare codons to significantly hinder translation in BL21(DE3). Additionally, the extra plasmid load in Rosetta could impose a metabolic burden, reducing its overall protein production efficiency. As a result, in cases where rare codon usage is not a critical factor, BL21(DE3) might provide a more efficient platform for protein expression.
The results indicate that the protein expression level in the BL21(DE3) strain is higher compared to that in the Rosetta strain.
Fig. 4 | Comparison of fusion protein expression in E. coli strains BL21(DE3) and Rosetta.
1. Protein ladder; Lanes 2-4 (BL21(DE3) LB 37℃ 4h) 2. total liquid (+IPTG); 3. supernatant (+IPTG); 4. precipitate (+IPTG); Lanes 5-7 (Rosetta LB 37℃ 4h) 5. total liquid (+IPTG); 6. supernatant (+IPTG); 7. precipitate (+IPTG).
Protein Purification
After considering both expression efficiency and practical experimental constraints, we decided to express the fusion protein at 37°C for 4 h in LB medium using the pET-SUMO-TRn4-mfp5 plasmid.As shown in Figures 4-6, the target protein was present in the pellet after cell lysis. Therefore, we denatured the pellet of the fusion protein TRn4-mfp5 with 8M urea overnight and renatured it through dialysis. This process resulted in some protein loss, as confirmed by SDS-PAGE analysis.
Consequently, we proceeded to purify the fusion protein TRn4-mfp5 using a Ni-NTA Gravity Column.
The target protein bands were present in lanes 4 to 7, indicating successful expression of the target protein, with a particularly strong band in the supernatant after denaturation (Fig. 5, lane 7). After purification, the target protein was mainly found in the 150 mM and 300 mM imidazole elution fractions.
Fig. 5 | SDS-PAGE of purified fusion protein TRn4-mfp5(35.4 kDa) uses vector pET-SUMO.
Lane 1: Protein - Binding buffer; Lane 2: 20 mM imidazole and 8 M urea elution; Lane 3: 50 mM imidazole and 8 M urea elution; Lane 4: 150 mM imidazole and 8 M urea elution; Lane 5: 300 mM imidazole and 8 M urea elution; Lane 6: 500 mM imidazole and 8 M urea elution; Lane 7: Supernatant; Lane 8: Impurities; Lane 9: Protein ladder.
To further confirm the expression of TRn4-mfp5, we performed a Western blot, which provided a clear and definitive conclusion, verifying the successful expression of the TRn4-mfp5 protein under the conditions mentioned above.
Fig. 6 | Western Blot of purified fusion protein TRn4-mfp5(35.4 kDa) uses vector pET-SUMO.
a. Western blot of the pre-expressed protein;b. Western blot after column purification of the supernatant following denaturation.
Adhesive test
We obtained protein samples of TRn4-mfp5 by freezedrying 24 h (Fig. 9). The final yield was about 25 mg/L bacterial culture.
Fig. 7 | The protein sample freeze-dried by a lyophilizer.
Next, we dissolved protein samples in Buffer A (10 mL 20 mM Tris pH8) to reach 0.3 mg/mL, and conduct adhesive ability tests on the fusion protein(Fig. 10). 200 μL of the protein solution was applied, and the pipette tip was placed on a plastic Petri dish lid. After incubation at 37°C for 8 h, the pipette tip successfully adhered.
Fig. 8 | Adhesive ability test of fusion protein on plastic surface
Surface Area Calculation:
The surface area of a 10 µl pipette tip with an inner diameter of 3.7 mm is calculated as:
S = π × r² = π × (0.185 cm)² = 0.1075 cm²
Force Calculation:
The total mass is (5.951 + 0.448 × 3) grams, and the force is:
F = 7.295 g × 9.8 N/kg = 0.07149 N
Adhesive Force Calculation:
The adhesive force produced by the protein is:
P = F / S = 0.07149 N / 0.1075 cm² = 0.665 N/cm² ≈ 6.65 KPa
Adhesive Force per Milligram of Protein:
The adhesive force per milligram of protein is:
P' = P / m = 6.65 KPa / 1 mg = 6.65 KPa/mg
Reference
[1] Jung H., Pena-Francesch A., Saadat A, et al. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins[J]. PNAS, 2016, 113(23), 6478–6483.
[2] Zhang C, Wu B, Zhou Y, et al. Mussel-inspired hydrogels: from design principles to promising applications[J]. Chem Soc Rev, 2020, 49(3605): 3605-3637.