Difference between revisions of "Part:BBa K5291021:Design"
Kortybones (Talk | contribs) (→Design Notes) |
Kortybones (Talk | contribs) (→References) |
||
Line 14: | Line 14: | ||
===References=== | ===References=== | ||
− | [1]Bielecki, P., et al., Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. Nucleic Acids Res, 2015. 43(13): p. 6413-25. | + | [1]Bielecki, P., et al., Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. Nucleic Acids Res, 2015. 43(13): p. 6413-25.<br> |
− | [2]Tamber, S., et al., Characterization of OpdH, a Pseudomonas aeruginosa porin involved in the uptake of tricarboxylates. J Bacteriol, 2007. 189(3): p. 929-39. | + | [2]Tamber, S., et al., Characterization of OpdH, a Pseudomonas aeruginosa porin involved in the uptake of tricarboxylates. J Bacteriol, 2007. 189(3): p. 929-39.<br> |
− | [3]Brocker, M., et al., Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol, 2009. 191(12): p. 3869-80. | + | [3]Brocker, M., et al., Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol, 2009. 191(12): p. 3869-80.<br> |
[4]Underhill, S. and M.T. Cabeen, Redundancy in Citrate and cis-Aconitate Transport in Pseudomonas aeruginosa. J Bacteriol, 2022. 204(12): p. e0028422. | [4]Underhill, S. and M.T. Cabeen, Redundancy in Citrate and cis-Aconitate Transport in Pseudomonas aeruginosa. J Bacteriol, 2022. 204(12): p. e0028422. |
Revision as of 04:45, 28 September 2024
PopdH
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 16
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
We choose this promoter because the opdH-tctCBA-tctDE manipulator system natively exists in Pseudomonas aeruginosa, which means that we do not need to introduce more regulatory genes into the engineered bacteria. We can just put the PopdH promoter into Pseudomonas aeruginosa and the tctD in it will naturally come into effect.
Source
Pseudomonas aeruginosa
References
[1]Bielecki, P., et al., Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. Nucleic Acids Res, 2015. 43(13): p. 6413-25.
[2]Tamber, S., et al., Characterization of OpdH, a Pseudomonas aeruginosa porin involved in the uptake of tricarboxylates. J Bacteriol, 2007. 189(3): p. 929-39.
[3]Brocker, M., et al., Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol, 2009. 191(12): p. 3869-80.
[4]Underhill, S. and M.T. Cabeen, Redundancy in Citrate and cis-Aconitate Transport in Pseudomonas aeruginosa. J Bacteriol, 2022. 204(12): p. e0028422.