Difference between revisions of "Part:BBa K5317014"

(Theoretical Part Design)
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K5317014 short</partinfo>
 
<partinfo>BBa_K5317014 short</partinfo>
Line 20: Line 19:
  
  
===References===
+
=References=
 
+
  
 
Liao, X., Li, H., Guo, Y., Yang, F., Chen, Y., He, X., Li, H., Xia, W., Mao, Z.-W., & Sun, H. (2022). Regulation of DNA-binding activity of the Staphylococcus aureus catabolite control protein A by copper (II)-mediated oxidation. ''Journal of Biological Chemistry'', 298(3), 101587. https://doi.org/10.1016/j.jbc.2022.101587
 
Liao, X., Li, H., Guo, Y., Yang, F., Chen, Y., He, X., Li, H., Xia, W., Mao, Z.-W., & Sun, H. (2022). Regulation of DNA-binding activity of the Staphylococcus aureus catabolite control protein A by copper (II)-mediated oxidation. ''Journal of Biological Chemistry'', 298(3), 101587. https://doi.org/10.1016/j.jbc.2022.101587

Revision as of 17:52, 27 September 2024

CcpA

Usage and Biology

The regulatory functions of CcpA are modulated by phosphorylation by serine/threonine kinases, which can affect its DNA-binding activity and thus its ability to regulate target genes. This phosphorylation-dependent mechanism enables S. aureus to adapt to different environmental conditions, thereby increasing its survivability and virulence (Liao et al., 2022). We used this bacterial protein to evaluate the interaction with the PknB kinase.

Cloning

Theoretical Part Design

This part was codon optimised for human cell lines and synthesised by Eurofins.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Characterization

The correct ccpA functionality was analyzed by composing a gene cassette where its placed downstream of the constitutuve CMV promoter and fused with the reporter gene mRuby2 to assess by indication with ß-lactam antibiotics the ccpA localization based on the fluorescent signal. Please visit the K5317019 registry entry to view the results.


References

Liao, X., Li, H., Guo, Y., Yang, F., Chen, Y., He, X., Li, H., Xia, W., Mao, Z.-W., & Sun, H. (2022). Regulation of DNA-binding activity of the Staphylococcus aureus catabolite control protein A by copper (II)-mediated oxidation. Journal of Biological Chemistry, 298(3), 101587. https://doi.org/10.1016/j.jbc.2022.101587