Difference between revisions of "Part:BBa K5490001"
Tzonissss13 (Talk | contribs) |
|||
(One intermediate revision by the same user not shown) | |||
Line 5: | Line 5: | ||
gRNAs (guide RNAs) are relatively small RNA molecules that play a crucial role in gene editing and RNA-targeting technologies. They are typically expressed under the control of a promoter, often polymerase III, which is ideal given the high complexity of the gRNA's secondary structure. These gRNAs are composed of two main components: | gRNAs (guide RNAs) are relatively small RNA molecules that play a crucial role in gene editing and RNA-targeting technologies. They are typically expressed under the control of a promoter, often polymerase III, which is ideal given the high complexity of the gRNA's secondary structure. These gRNAs are composed of two main components: | ||
− | The scaffold or direct repeat region | + | The scaffold or direct repeat region |
The spacer: This is a 23-nucleotide sequence that is complementary to the target RNA, guiding CasRx to the specific RNA region for cleavage. In this case, the target is a region within the West Nile Virus (WNV) genome. The spacer sequence was selected using an algorithm designed to optimize its binding and cutting efficiency, ensuring that the CasRx-gRNA complex can cleave the target RNA with high specificity and effectiveness. | The spacer: This is a 23-nucleotide sequence that is complementary to the target RNA, guiding CasRx to the specific RNA region for cleavage. In this case, the target is a region within the West Nile Virus (WNV) genome. The spacer sequence was selected using an algorithm designed to optimize its binding and cutting efficiency, ensuring that the CasRx-gRNA complex can cleave the target RNA with high specificity and effectiveness. | ||
− | By integrating both the scaffold and spacer, researchers can achieve precise RNA cleavage. | + | By integrating both the scaffold and spacer, researchers can achieve precise RNA cleavage. This is the second spacer sequence. |
Line 24: | Line 24: | ||
<partinfo>BBa_K5490001 parameters</partinfo> | <partinfo>BBa_K5490001 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | Sources | ||
+ | |||
+ | Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell. 2018 Apr 19;173(3):665-676.e14. doi: 10.1016/j.cell.2018.02.033. Epub 2018 Mar 15. PMID: 29551272; PMCID: PMC5910255. | ||
+ | |||
+ | Vad-Nielsen J, Lin L, Bolund L, Nielsen AL, Luo Y. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cell Mol Life Sci. 2016 Nov;73(22):4315-4325. doi: 10.1007/s00018-016-2271-5. Epub 2016 May 13. PMID: 27178736; PMCID: PMC11108369. | ||
+ | |||
+ | Chuang YF, Wang PY, Kumar S, Lama S, Lin FL, Liu GS. Methods for in vitro CRISPR/CasRx-Mediated RNA Editing. Front Cell Dev Biol. 2021 Jun 11;9:667879. doi: 10.3389/fcell.2021.667879. PMID: 34178991; PMCID: PMC8226256. |
Latest revision as of 15:33, 27 September 2024
23-nt sequence binds CasRx to cleave WNV genome; modifiable target 2
gRNAs (guide RNAs) are relatively small RNA molecules that play a crucial role in gene editing and RNA-targeting technologies. They are typically expressed under the control of a promoter, often polymerase III, which is ideal given the high complexity of the gRNA's secondary structure. These gRNAs are composed of two main components:
The scaffold or direct repeat region
The spacer: This is a 23-nucleotide sequence that is complementary to the target RNA, guiding CasRx to the specific RNA region for cleavage. In this case, the target is a region within the West Nile Virus (WNV) genome. The spacer sequence was selected using an algorithm designed to optimize its binding and cutting efficiency, ensuring that the CasRx-gRNA complex can cleave the target RNA with high specificity and effectiveness.
By integrating both the scaffold and spacer, researchers can achieve precise RNA cleavage. This is the second spacer sequence.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Sources
Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell. 2018 Apr 19;173(3):665-676.e14. doi: 10.1016/j.cell.2018.02.033. Epub 2018 Mar 15. PMID: 29551272; PMCID: PMC5910255.
Vad-Nielsen J, Lin L, Bolund L, Nielsen AL, Luo Y. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cell Mol Life Sci. 2016 Nov;73(22):4315-4325. doi: 10.1007/s00018-016-2271-5. Epub 2016 May 13. PMID: 27178736; PMCID: PMC11108369.
Chuang YF, Wang PY, Kumar S, Lama S, Lin FL, Liu GS. Methods for in vitro CRISPR/CasRx-Mediated RNA Editing. Front Cell Dev Biol. 2021 Jun 11;9:667879. doi: 10.3389/fcell.2021.667879. PMID: 34178991; PMCID: PMC8226256.