Difference between revisions of "Part:BBa K5317015"
(→Theoretical Part Design) |
|||
Line 12: | Line 12: | ||
===Theoretical Part Design=== | ===Theoretical Part Design=== | ||
− | We placed the mRuby2 fluorescent marker (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317001 K5317001]</span>) downstream behind graR. This gene was codon optimised for human cell lines. | + | We placed the mRuby2 fluorescent marker (<span class="plainlinks">[https://parts.igem.org/Part:BBa_K5317001 K5317001]</span>) downstream behind graR. This gene was codon optimised for human cell lines. This part was amplified by using the primers in table 1. |
<html> | <html> |
Revision as of 16:04, 26 September 2024
GraR
Usage and Biology
GraR is known for its role in β-lactam resistance by upregulating cell wall biosynthesis genes, altering cell wall composition, and increasing expression of ABC-transporters (El-Halfawy et al., 2020; Yang et al., 2012; Meehl et al., 2007). The GraSR system is a two-component regulatory system that controls the expression of many genes involved in stress response, cell wall metabolism and virulence pathways in Staphylococcus aureus (Falord et al., 2011).
Accordingly, GraR functions as a transcription factor and our cell-based antiobiotics sensor utilises it as such by aiming for its PknB-dependent phyosphorylation (K5317013).
Cloning
Theoretical Part Design
We placed the mRuby2 fluorescent marker (K5317001) downstream behind graR. This gene was codon optimised for human cell lines. This part was amplified by using the primers in table 1.
Primer name | Sequence |
---|---|
graR_fw_1 | TGAACCGTCAGATCCGatgcaaatactactagtagaagatgacaatactttgt |
graR_rv_1 | tggatccccttcatgagccatatatccttttcctacttttgt |
Sequence and Features
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal XbaI site found at 235
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23INCOMPATIBLE WITH RFC[23]Illegal XbaI site found at 235
- 25INCOMPATIBLE WITH RFC[25]Illegal XbaI site found at 235
- 1000COMPATIBLE WITH RFC[1000]
References
El-Halfawy, O. M., Czarny, T. L., Flannagan, R. S., Day, J., Bozelli, J. C., Kuiack, R. C., Salim, A., Eckert, P., Epand, R. M., McGavin, M. J., Organ, M. G., Heinrichs, D. E., & Brown, E. D. (2020). Discovery of an antivirulence compound that reverses β-lactam resistance in MRSA. Nature Chemical Biology, 16(2), 143–149. https://doi.org/10.1038/s41589-019-0401-8
Falord, M., Mäder, U., Hiron, A., Débarbouillé, M., & Msadek, T. (2011). Investigation of the Staphylococcus aureus GraSR Regulon Reveals Novel Links to Virulence, Stress Response and Cell Wall Signal Transduction Pathways. PLoS ONE, 6(7), e21323. https://doi.org/10.1371/journal.pone.0021323
Meehl, M., Herbert, S., Götz, F., & Cheung, A. (2007). Interaction of the GraRS Two-Component System with the VraFG ABC Transporter To Support Vancomycin-Intermediate Resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy , 51(8), 2679–2689. https://doi.org/10.1128/AAC.00209-07
Yang, S.-J., Bayer, A. S., Mishra, N. N., Meehl, M., Ledala, N., Yeaman, M. R., Xiong, Y. Q., & Cheung, A. L. (2012). The Staphylococcus aureus Two-Component Regulatory System, GraRS, Senses and Confers Resistance to Selected Cationic Antimicrobial Peptides. Infection and Immunity, 80(1), 74–81. https://doi.org/10.1128/IAI.05669-11