Difference between revisions of "Part:BBa K5237004"

Line 40: Line 40:
 
   <!-- Part summary -->
 
   <!-- Part summary -->
 
   <section id="1">
 
   <section id="1">
     <h1>!!!Part Name!!!</h1>
+
     <h1>Half-Staple: Oct1-DBD</h1>
     <p>Lorem ipsum odor amet, consectetuer adipiscing elit. Mi volutpat nunc himenaeos malesuada, fermentum metus ex
+
     <p>Oct1-DBD is the DNA-binding domain of the human Oct1 transcription factor, binding specifically to the octamer
      senectus proin. Primis natoque adipiscing ultricies volutpat dictum varius auctor molestie euismod. Platea primis
+
       motif (5'-ATGCAAAT-3') with high affinity and stability.</p>
      natoque vivamus himenaeos sagittis habitant mauris pulvinar. Scelerisque morbi praesent turpis convallis euismod
+
      morbi. Eget est iaculis morbi molestie lacus ornare mollis massa ut. Turpis nam odio quis erat nunc placerat
+
       nascetur.</p>
+
 
     <p>&nbsp;</p>
 
     <p>&nbsp;</p>
 
   </section>
 
   </section>
Line 73: Line 70:
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
  
     <p>The PICasSO toolbox provides a comprehensive platform for engineering, optimizing and testing new systems for
+
     <p>The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
       spatial DNA organization. With PiCasSo, you can efficiently design and test new systems for a wide range of
+
      impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
       synthetic biology applications.
+
      chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, tools to precisely
       <br>
+
      manipulate this genomic architecture remain limited, making it challenging to explore the full potential of the 3D
       Our parts collection includes:
+
      genome in synthetic biology. To address this issue, team Heidelberg developed PICasSO.
        <table style="width: 55%;">
+
    </p>
          <td colspan="2" align="left"><b>DNA-binding proteins: </b>
+
    <p>The <b>PICasSO part collection</b> offers a comprehensive, modular platform for precise manipulation of DNA-DNA
            The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
+
      proximity in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer
            easy assembly.</td>
+
      hijacking, or design entirely new spatial architectures for gene regulation. Beyond its versatility, PICasSO
          <tbody>
+
      includes robust measurement systems to support the engineering, optimization, and testing of new staples, ensuring
            <tr>
+
       functionality both in vivo and in vitro.
            <tr>
+
    </p>
              <td><a href="https://parts.igem.org/Part:BBa_K2926000" target="_blank">BBa_K5237000</a>
+
    <p>With its combination of staple systems, functionalization options, and measurement tools, PICasSO provides a
              </td>
+
      complete solution for designing, testing, and refining new systems for spatial DNA organization. This toolbox
              <td>tetR-Oct1 Simple Staple
+
       unlocks new possibilities in synthetic biology, from studying fundamental genomic interactions to creating
              </td>
+
       innovative gene therapies.</p>
            </tr>
+
    <p>
            <tr>
+
       <font size="4"><b>Our parts collection includes:</b></font><br>
              <td><a href="https://parts.igem.org/Part:BBa_K2926001" target="_blank">BBa_K5237001</a>
+
    </p>
              </td>
+
 
              <td>fgRNA Entryvector MbCas12a-SpCas9
+
    <table style="width: 65%;">
              </td>
+
      <td colspan="2" align="left"><b>DNA-binding proteins: </b>
            </tr>
+
        The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
            <tr>
+
        easy assembly.</td>
              <td><a href="https://parts.igem.org/Part:BBa_K2926002" target="_blank">BBa_K5237002</a>
+
      <tbody>
              </td>
+
        <tr>
              <td>dMbCas12a
+
        <tr>
              </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926000" target="_blank">BBa_K5237000</a></td>
            </tr>
+
          <td>Half-Staple: Oct1-DBD</td>
            <tr>
+
        </tr>
              <td><a href="https://parts.igem.org/Part:BBa_K2926003" target="_blank">BBa_K5237003</a>
+
        <tr>
              </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926001" target="_blank">BBa_K5237001</a></td>
              <td>dSpCas9
+
          <td>Half-Staple: TetR</td>
              </td>
+
        </tr>
            </tr>
+
        <tr>
            <tr>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926002" target="_blank">BBa_K5237002</a></td>
              <td><a href="https://parts.igem.org/Part:BBa_K2926004" target="_blank">BBa_K5237004</a>
+
          <td>Simple-Staple: TetR-Oct1</td>
              </td>
+
        </tr>
              <td>dMbCas12a-dSpCas9 "dFusionCas"
+
        <tr>
              </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926003" target="_blank">BBa_K5237003</a></td>
            </tr>
+
          <td>Half-Staple: GCN4</td>
          </tbody>
+
        </tr>
           <td colspan="2" align="left"><b>Functional elements: </b>
+
        <tr>
            Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926004" target="_blank">BBa_K5237004</a></td>
            for custom applications.</td>
+
          <td>Half-Staple: rGCN4</td>
            <tbody>
+
        </tr>
              <tr>
+
        <tr>
              <tr>
+
           <td><a href="https://parts.igem.org/Part:BBa_K2926005" target="_blank">BBa_K5237005</a></td>
                <td><a href="https://parts.igem.org/Part:BBa_K2926005" target="_blank">BBa_K5237005</a>
+
          <td>Mini-Staple: bGCN4</td>
                </td>
+
        </tr>
                <td>fgRNA Processing Casette
+
        <tr>
                </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926006" target="_blank">BBa_K5237006</a></td>
              </tr>
+
          <td>fgRNA Entryvector: MbCas12a-SpCas9</td>
              <tr>
+
        </tr>
                <td><a href="https://parts.igem.org/Part:BBa_K2926006" target="_blank">BBa_K5237006</a>
+
        <tr>
                </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926007" target="_blank">BBa_K5237007</a></td>
                <td>Cathepsin B Cleavable Linker
+
          <td>Half-Staple: dMbCas12a-NLS</td>
                </td>
+
        </tr>
              </tr>
+
        <tr>
              <tr>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926008" target="_blank">BBa_K5237008</a></td>
                <td><a href="https://parts.igem.org/Part:BBa_K2926007" target="_blank">BBa_K5237007</a>
+
          <td>Half-Staple: NLS-dSpCas9-NLS</td>
                </td>
+
        </tr>
                <td>Cathepsin Expression Casette
+
        <tr bgcolor="#FFD700">
                </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926009" target="_blank">BBa_K5237009</a></td>
              </tr>
+
          <td>Cas-Staple: NLS-dMbCas12a-dSpCas9-NLS</td>
              <tr>
+
        </tr>
                <td><a href="https://parts.igem.org/Part:BBa_K2926008" target="_blank">BBa_K5237008</a>
+
      </tbody>
                </td>
+
      <td colspan="2" align="left"><b>Functional elements: </b>
                <td>Caged NpuN Intein
+
        Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
                </td>
+
        for custom applications.</td>
              </tr>
+
      <tbody>
              <tr>
+
        <tr>
                <td><a href="https://parts.igem.org/Part:BBa_K2926009" target="_blank">BBa_K5237009</a>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926010" target="_blank">BBa_K5237010</a></td>
                </td>
+
          <td>fgRNA processing casette</td>
                <td>Caged NpuC Intein
+
        </tr>
                </td>
+
        <tr bgcolor="#FFD700">
              </tr>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926011" target="_blank">BBa_K5237011</a></td>
              <td><a href="https://parts.igem.org/Part:BBa_K2926010" target="_blank">BBa_K5237010</a>
+
          <td>Cathepsin B-Cleavable Linker (GFLG)</td>
              </td>
+
        </tr>
              <td>Conjugation Origin of Transfer (oriT)
+
        <tr>
              </td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K29260012" target="_blank">BBa_K5237012</a></td>
              </tr>
+
          <td>Cathepsin B Expression Cassette</td>
              <td><a href="https://parts.igem.org/Part:BBa_K2926011" target="_blank">BBa_K5237011</a>
+
        </tr>
              </td>
+
        <tr>
              <td>Intimin Anti-EGFR Nanobody
+
          <td><a href="https://parts.igem.org/Part:BBa_K29260013" target="_blank">BBa_K5237013</a></td>
              </td>
+
          <td>Caged NpuN Intein</td>
              </tr>
+
        </tr>
            </tbody>
+
        <tr>
           <td colspan="2" align="left"><b>Functional elements: </b>
+
          <td><a href="https://parts.igem.org/Part:BBa_K29260014" target="_blank">BBa_K5237014</a></td>
            Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
          <td>Caged NpuC Intein</td>
            for custom applications.</td>
+
        </tr>
            <tbody>
+
        <tr>
              <tr>
+
          <td><a href="https://parts.igem.org/Part:BBa_K29260015" target="_blank">BBa_K5237015</a></td>
              <tr>
+
          <td>DNA delivery: Intimin anti-EGFR Nanobody</td>
                <td><a href="https://parts.igem.org/Part:BBa_K29260012" target="_blank">BBa_K5237012</a>
+
        </tr>
                </td>
+
      </tbody>
                <td>GCN4 Leucine Zipper
+
      <td colspan="2" align="left"><b>Readout Systems: </b>
                </td>
+
        FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
              </tr>
+
        enabling swift testing and easy development for new systems.</td>
              <tr>
+
      <tbody>
                <td><a href="https://parts.igem.org/Part:BBa_K29260013" target="_blank">BBa_K5237013</a>
+
        <tr bgcolor="#FFD700">
                </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K29260016" target="_blank">BBa_K5237016</a></td>
                <td>rGCN4 Reverse Leucine Zipper
+
          <td>FRET-Donor: mNeonGreen-Oct1</td>
                </td>
+
        </tr>
              </tr>
+
        <tr bgcolor="#FFD700">
              <tr>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926017" target="_blank">BBa_K5237017</a></td>
                <td><a href="https://parts.igem.org/Part:BBa_K29260014" target="_blank">BBa_K5237014</a>
+
          <td>FRET-Acceptor: TetR-mScarlet-I</td>
                </td>
+
        </tr>
                <td>mNeonGreen-Oct1-DBD Fusion Protein
+
        <tr>
                </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926018" target="_blank">BBa_K5237018</a></td>
              </tr>
+
          <td>Oct1 Binding Casette</td>
              <tr>
+
        </tr>
                <td><a href="https://parts.igem.org/Part:BBa_K29260015" target="_blank">BBa_K5237015</a>
+
        <tr>
                </td>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926019" target="_blank">BBa_K5237019</a></td>
                <td>TetR-mScarlet-I Fusion Protein
+
          <td>TetR Binding Cassette</td>
                </td>
+
        </tr>
              </tr>
+
        <td><a href="https://parts.igem.org/Part:BBa_K2926020" target="_blank">BBa_K5237020</a></td>
              <tr>
+
        <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
                <td><a href="https://parts.igem.org/Part:BBa_K29260016" target="_blank">BBa_K5237016</a>
+
        </tr>
                </td>
+
        <tr>
                <td>Oct1 Binding Casette
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926021" target="_blank">BBa_K5237021</a></td>
                </td>
+
          <td>NLS-Gal4-VP64</td>
              </tr>
+
        </tr>
              <td><a href="https://parts.igem.org/Part:BBa_K2926017" target="_blank">BBa_K5237017</a>
+
        <td><a href="https://parts.igem.org/Part:BBa_K2926022" target="_blank">BBa_K5237022</a></td>
              </td>
+
        <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
              <td>Tet Response Element Binding Casette
+
        </tr>
              </td>
+
        <tr>
              </tr>
+
          <td><a href="https://parts.igem.org/Part:BBa_K2926023" target="_blank">BBa_K5237023</a></td>
              <td><a href="https://parts.igem.org/Part:BBa_K2926018" target="_blank">BBa_K5237018</a>
+
          <td>UAS binding Firefly Luciferase Readout System</td>
              </td>
+
        </tr>
              <td>SV40-Gal4-GFLG-VP64 Fusion Protein
+
 
              </td>
+
      </tbody>
              </tr>
+
    </table>
              <td><a href="https://parts.igem.org/Part:BBa_K2926019" target="_blank">BBa_K5237019</a>
+
              </td>
+
              <td>SV40-Gal4-VP64 Fusion Protein
+
              </td>
+
              </tr>
+
              <td><a href="https://parts.igem.org/Part:BBa_K2926020" target="_blank">BBa_K5237020</a>
+
              </td>
+
              <td>UAS - mCherry Expression Casette
+
              </td>
+
              </tr>
+
              <td><a href="https://parts.igem.org/Part:BBa_K2926021" target="_blank">BBa_K5237021</a>
+
              </td>
+
              <td>Gal4-VP64 Fusion Protein
+
              </td>
+
              </tr>
+
              <td><a href="https://parts.igem.org/Part:BBa_K2926022" target="_blank">BBa_K5237022</a>
+
              </td>
+
              <td> 5x UAS binding Firefly-Luciferase Minimal Expression Casette</td>
+
            </tbody>
+
          </table>
+
 
     </p>
 
     </p>
 
   </section>
 
   </section>
Line 256: Line 233:
 
       </div>
 
       </div>
 
     </div>
 
     </div>
     <p>Lorem ipsum odor amet, consectetuer adipiscing elit. Mi volutpat nunc himenaeos malesuada, fermentum metus ex
+
     <p>Oct1-DBD is the DNA-binding domain of the human transcription factor Oct1 (POU2F1), which plays a key role in
       senectus proin. Primis natoque adipiscing ultricies volutpat dictum varius auctor molestie euismod. Platea primis
+
      gene regulation, immune response, and stress adaptation in eukaryotic cells. This domain specifically binds to the
       natoque vivamus himenaeos sagittis habitant mauris pulvinar. Scelerisque morbi praesent turpis convallis euismod
+
      octamer motif (5’-ATGCAAAT-3’) within promoter and enhancer regions, influencing transcriptional activity
       morbi. Eget est iaculis morbi molestie lacus ornare mollis massa ut. Turpis nam odio quis erat nunc placerat
+
       (Lundbäck <i>et al.</i>, 2000). The Oct1-DBD consists of both a POU-specific domain and a POU homeodomain, which
       nascetur.</p>
+
       work
 +
      together to form a stable complex with DNA (Park <i>et al.</i>, 2013, Stepchenko <i>et al.</i> 2021).
 +
    </p>
 +
    <p>In synthetic biology, Oct1-DBD was previously used for plasmid display technology due to its strong binding
 +
       affinity (K<sub>D</sub> = 9 &times 10<sup>-11</sup> M). Proteins fused with Oct1-DBD showed increased expression
 +
      and protein solubility
 +
      (Parker <i>et al.</i> 2020).
 +
    </p>
 +
    <p>
 +
       This part was further used in <a href="https:parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a> as
 +
      a fusion with tetR, resulting in a bivalent DNA binding staple, and
 +
      also fused to mNeonGree, as part of a FRET readout system (<a href="https:parts.igem.org/Part:BBa_K5237016"
 +
        target="_blank">BBa_K5237016</a>).
 +
    </p>
 +
 
 +
 
 
   </section>
 
   </section>
 
   <section id="3">
 
   <section id="3">
 
     <h1>3. Assembly and part evolution</h1>
 
     <h1>3. Assembly and part evolution</h1>
     <p>Lorem ipsum odor amet, consectetuer adipiscing elit. Mi volutpat nunc himenaeos malesuada, fermentum metus ex
+
     <p>The Oct1-DBD amino acid sequence was obtained from <a href="https://www.uniprot.org/uniprot/P14859"
       senectus proin. Primis natoque adipiscing ultricies volutpat dictum varius auctor molestie euismod. Platea primis
+
        target="_blank">UniProt (P14859, POU domain, class 2, transcription factor 1)</a>
       natoque vivamus himenaeos sagittis habitant mauris pulvinar. Scelerisque morbi praesent turpis convallis euismod
+
       and DNA binding domain extracted based on information given from Park <i>et al.</i> 2013 & 2020.
       morbi. Eget est iaculis morbi molestie lacus ornare mollis massa ut. Turpis nam odio quis erat nunc placerat
+
       An <i>E. coli</i> codon optimized DNA sequence was obtained through gene synthesis and used to clone further
      nascetur.</p>
+
       constructs
 +
    </p>
 
   </section>
 
   </section>
 
   <section id="4">
 
   <section id="4">
 
     <h1>4. Results</h1>
 
     <h1>4. Results</h1>
     <p>Lorem ipsum odor amet, consectetuer adipiscing elit. Mi volutpat nunc himenaeos malesuada, fermentum metus ex
+
     <p>Oct1 was N-terminally fused to the His6-mNeonGreen, and expressed under a T7 expression protein and subsequently
       senectus proin. Primis natoque adipiscing ultricies volutpat dictum varius auctor molestie euismod. Platea
+
      purified using metal affinity chromatography with Ni-NTA beads.
       primis natoque vivamus himenaeos sagittis habitant mauris pulvinar. Scelerisque morbi praesent turpis convallis
+
       [!!Picture of SDS-Page sds-page-mng-oct1-expression.svg]
       euismod morbi. Eget est iaculis morbi molestie lacus ornare mollis massa ut. Turpis nam odio quis erat nunc
+
       DNA binding affinity was estimated with an electrophoretic mobility shift assay (EMSA). For this, three different
       placerat nascetur.</p>
+
       buffer conditions were tested (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>, 1.8
 +
       mM KH<sub>2</sub>HPO<sub>4</sub>,
 +
      0.1 % (v/v) IGEPAL&#174; CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250:
 +
      Na<sub>2</sub>HPO<sub>4</sub>, 150 mM
 +
      NaCl, 250 mM Imidazol). DNA binding could only be detected for Binding buffer 1.
 +
    </p>
 +
 
 
   </section>
 
   </section>
 
   <section id="5">
 
   <section id="5">
 
     <h1>5. References</h1>
 
     <h1>5. References</h1>
     <p>Wu, W., Zhang, L., Yao, L., Tan, X., Liu, X., & Lu, X. (2015). Genetically assembled fluorescent biosensor
+
     <p>
       for in situ detection of bio-synthesized alkanes. Scientific reports, 5, 10907. <a
+
      Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of
         href="https://doi.org/10.1038/srep10907" target="_blank">https://doi.org/10.1038/srep10907</a></p>
+
      Sequence-Specific DNA Binding by the Transcription Factor Oct-1. Biochemistry, 39(25), 7570–7579.
 +
      <a href="https://doi.org/10.1021/bi000377h" target="_blank">https://doi.org/10.1021/bi000377h</a>
 +
    </p>
 +
    <p>
 +
      Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding
 +
       domain suitable for in vitro screening of engineered proteins. Journal of Bioscience and Bioengineering, 116(2),
 +
      246-252.
 +
      <a href="https://doi.org/10.1016/j.jbiosc.2013.02.005"
 +
         target="_blank">https://doi.org/10.1016/j.jbiosc.2013.02.005</a>.
 +
    </p>
 +
    <p>
 +
      Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim,
 +
      S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell
 +
      Biotransformation Efficiency. Frontiers in Bioengineering and Biotechnology, 7.
 +
      <a href="https://doi.org/10.3389/fbioe.2019.00444" target="_blank">https://doi.org/10.3389/fbioe.2019.00444</a>
 +
    </p>
 +
    <p>
 +
      Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., &
 +
      Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal
 +
      cells from stress. Scientific Reports, 11(1), 18808.
 +
      <a href="https://doi.org/10.1038/s41598-021-98323-y"
 +
        target="_blank">https://doi.org/10.1038/s41598-021-98323-y</a>
 +
    </p>
 
   </section>
 
   </section>
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 20:29, 25 September 2024


BBa_K5237000

Half-Staple: Oct1-DBD

Oct1-DBD is the DNA-binding domain of the human Oct1 transcription factor, binding specifically to the octamer motif (5'-ATGCAAAT-3') with high affinity and stability.

 

The PICasSO Toolbox

The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells, impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, tools to precisely manipulate this genomic architecture remain limited, making it challenging to explore the full potential of the 3D genome in synthetic biology. To address this issue, team Heidelberg developed PICasSO.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation of DNA-DNA proximity in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer hijacking, or design entirely new spatial architectures for gene regulation. Beyond its versatility, PICasSO includes robust measurement systems to support the engineering, optimization, and testing of new staples, ensuring functionality both in vivo and in vitro.

With its combination of staple systems, functionalization options, and measurement tools, PICasSO provides a complete solution for designing, testing, and refining new systems for spatial DNA organization. This toolbox unlocks new possibilities in synthetic biology, from studying fundamental genomic interactions to creating innovative gene therapies.

Our parts collection includes:

DNA-binding proteins: The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring easy assembly.
BBa_K5237000 Half-Staple: Oct1-DBD
BBa_K5237001 Half-Staple: TetR
BBa_K5237002 Simple-Staple: TetR-Oct1
BBa_K5237003 Half-Staple: GCN4
BBa_K5237004 Half-Staple: rGCN4
BBa_K5237005 Mini-Staple: bGCN4
BBa_K5237006 fgRNA Entryvector: MbCas12a-SpCas9
BBa_K5237007 Half-Staple: dMbCas12a-NLS
BBa_K5237008 Half-Staple: NLS-dSpCas9-NLS
BBa_K5237009 Cas-Staple: NLS-dMbCas12a-dSpCas9-NLS
Functional elements: Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications.
BBa_K5237010 fgRNA processing casette
BBa_K5237011 Cathepsin B-Cleavable Linker (GFLG)
BBa_K5237012 Cathepsin B Expression Cassette
BBa_K5237013 Caged NpuN Intein
BBa_K5237014 Caged NpuC Intein
BBa_K5237015 DNA delivery: Intimin anti-EGFR Nanobody
Readout Systems: FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells enabling swift testing and easy development for new systems.
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I
BBa_K5237018 Oct1 Binding Casette
BBa_K5237019 TetR Binding Cassette
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64
BBa_K5237021 NLS-Gal4-VP64
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promotor, mCherry
BBa_K5237023 UAS binding Firefly Luciferase Readout System

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 339
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 571
    Illegal SapI site found at 662
    Illegal SapI.rc site found at 280

2. Usage and Biology

Figure 1
Lorem Ipsum

Oct1-DBD is the DNA-binding domain of the human transcription factor Oct1 (POU2F1), which plays a key role in gene regulation, immune response, and stress adaptation in eukaryotic cells. This domain specifically binds to the octamer motif (5’-ATGCAAAT-3’) within promoter and enhancer regions, influencing transcriptional activity (Lundbäck et al., 2000). The Oct1-DBD consists of both a POU-specific domain and a POU homeodomain, which work together to form a stable complex with DNA (Park et al., 2013, Stepchenko et al. 2021).

In synthetic biology, Oct1-DBD was previously used for plasmid display technology due to its strong binding affinity (KD = 9 &times 10-11 M). Proteins fused with Oct1-DBD showed increased expression and protein solubility (Parker et al. 2020).

This part was further used in BBa_K5237002 as a fusion with tetR, resulting in a bivalent DNA binding staple, and also fused to mNeonGree, as part of a FRET readout system (BBa_K5237016).

3. Assembly and part evolution

The Oct1-DBD amino acid sequence was obtained from UniProt (P14859, POU domain, class 2, transcription factor 1) and DNA binding domain extracted based on information given from Park et al. 2013 & 2020. An E. coli codon optimized DNA sequence was obtained through gene synthesis and used to clone further constructs

4. Results

Oct1 was N-terminally fused to the His6-mNeonGreen, and expressed under a T7 expression protein and subsequently purified using metal affinity chromatography with Ni-NTA beads. [!!Picture of SDS-Page sds-page-mng-oct1-expression.svg] DNA binding affinity was estimated with an electrophoretic mobility shift assay (EMSA). For this, three different buffer conditions were tested (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl; NaP250: Na2HPO4, 150 mM NaCl, 250 mM Imidazol). DNA binding could only be detected for Binding buffer 1.

5. References

Lundbäck, T., Chang, J.-F., Phillips, K., Luisi, B., & Ladbury, J. E. (2000). Characterization of Sequence-Specific DNA Binding by the Transcription Factor Oct-1. Biochemistry, 39(25), 7570–7579. https://doi.org/10.1021/bi000377h

Park, J. H., Kwon, H. W., & Jeong, K. J. (2013). Development of a plasmid display system with an Oct-1 DNA-binding domain suitable for in vitro screening of engineered proteins. Journal of Bioscience and Bioengineering, 116(2), 246-252. https://doi.org/10.1016/j.jbiosc.2013.02.005.

Park, Y., Shin, J., Yang, J., Kim, H., Jung, Y., Oh, H., Kim, Y., Hwang, J., Park, M., Ban, C., Jeong, K. J., Kim, S.-K., & Kweon, D.-H. (2020). Plasmid Display for Stabilization of Enzymes Inside the Cell to Improve Whole-Cell Biotransformation Efficiency. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00444

Stepchenko, A. G., Portseva, T. N., Glukhov, I. A., Kotnova, A. P., Lyanova, B. M., Georgieva, S. G., & Pankratova, E. V. (2021). Primate-specific stress-induced transcription factor POU2F1Z protects human neuronal cells from stress. Scientific Reports, 11(1), 18808. https://doi.org/10.1038/s41598-021-98323-y